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Mathematics on a TI-84/CE

Volume 1 of this book contains the basic topics: Graphics Calculators and Mathematics ;
Getting Started ; Coordinate Geometry ; Inequalities and Linear Programming ; Fitting Curves
to Data 1 – Calculator Functions ; Population Modelling 1 – Exponential Growth; Financial
Mathematics 1 – Compound Interest ; and Probability and Statistics 1 – Descriptive Statistics.

Volume 1 Supplement: Activities for Years 9 and 10 contains extra activities for
Coordinate Geometry and Probability and Statistics 1.

Volume 2 of this book contains topics directly relevant to Calculus and its applications,
although the first chapter, Functions and their Graphs, is of more general relevance and also
contains details of how to capture screenshots from your calculator, crop them if desired
and insert them into documents. The topics in Volume 2 are: Functions and their Graphs ;
Graph and Calculus Operations ; Numerical Integration; Taylor Series ; Differential Equations ;
Population Modelling 2 – Logistic and Epidemic Models ; Multivariable Calculus ; and Program
Information.

Program Information gives a list of all the programs in the book, and full information on
copying and using these programs.

Volume 4 contains 28 Mathematics labs or projects, together with a Lab Manual for teach-
ers/instructors.

Calculator versions

Currently (early 2023), TI-84 calculators come in two versions: the TI-84Plus and the more
recent TI-84CE. The main difference is that the CE screen has much higher resolution. It also
has colour but I have done most of the screens in black and white to avoid the need for colour



printers or photocopiers. Calculations, screenshots and figures were done on a TI-84CE in
CLASSIC mode.

Some programs have had to be changed for the CE because of the different screen: I usually
append ‘CE’ to the program name to indicate this.

All the programs here are available at canberramaths.org.au under Resources.



17 SEQUENCES AND SERIES

17 Sequences and Series

17.1 Introduction

These notes provide a comprehensive review of generating, displaying and graphing sequences
and series on a TI-84/CE graphics calculator. An arithmetic progression, a geometric progres-
sion and the Fibonacci numbers are used as examples. A number of questions (with solutions)
illustrate the use of the calculator. Finally there are three topics that could be used as a basis
for group investigation or a small project.

The TI-84/CE can generate sequences, sum series, and display sequence terms in a table or
graph. However, we should first ask whether it makes sense to use a graphics calculator at
all for sequences and series.

Certainly the first few lessons on sequences should be pencil and paper, until some of the
concepts and calculations are understood, although a class activity such as that on page 9
can add variety to the early learning stages. However, having to work out terms of a sequence
or series by hand eventually becomes tedious, especially those terms that are not simple and
require a calculator anyway. This becomes an impediment to further learning and exploration.

The calculator automates the process of calculating terms in a sequence or series once it is
given an appropriate definition. It is in finding an appropriate definition that most of the
thought goes — the calculator can’t do this. With automatic calculation comes the ability to
explore particular sequences and series, to conjecture and test, and to look at ideas such as
the convergence of an infinite sequence or series.1

Some of the questions and investigations in Sections 17.4 and 17.5 demonstrate this extra
capability when using a graphics calculator.

At this stage, it is perhaps useful for the reader to review the use of the TI-84/CE graphics
keys, the top row, by graphing, say y=x3 and generating a table of function values.

• Set a suitable window manually first and graph Y1 = X3.

• Then use ZoomFit
(

zoom 0
)

to carry out the process of finding a suitable Y

scale automatically. Use both graph and trace to generate the graph.

• Review line types
(
to the left of the function definition in y=

)
, particularly solid

and dotted lines. On a TI-84CE, you can choose a colour for the graph here too.

• For the table, use tblset to specify the starting value and increment for X.

Generate a table with table .

1These are not esoteric beasts — the humble AP and GP continue on indefinitely.

1
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17.2 Sequences

A sequence is an ordered set of numbers, usually with the numbers or terms in the sequence
determined by some sort of formula.2 For example,

1, 3, 5, 7, 9, 11, . . . 1,
1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . . 1, 1, 2, 3, 5, 8, 13, . . .

are sequences for which we can find a formula to determine each term.

In the usual notation, a general sequence is written as

u1, u2, u3, . . . , un, . . . ,

where each term u1, u2, u3, . . . is a number. The subscript gives the position of the term in
the sequence.

The TI-84/CE uses the notation u(n) for the nth term of the sequence, rather than un, so
the general sequence is written

u(1), u(2), u(3), . . . , u(n), . . . .

This was presumably done for ease of display, but it reinforces an important fact about
sequences: a sequence is really just a function with domain the positive integers or some
subset of them.

There are two ways to give a formula for each term.

� Recursively: write the nth term in terms of the previous term or terms. Here we also
need to know a value for the first term (or the first few terms) in the sequence.

Examples

1. u2 =u1+2, u3 =u2+2, . . . or in general, un=un−1+2.
With u1 = 1, this recursive formula gives the first sequence above, an arithmetic
progression (AP).

2. un=un−1/2.
With u1 =1, this gives the second sequence above, a geometric progression (GP).

3. un=un−1+un−2.
With u1 =1 and u2 =1, thus gives the third sequence above, the famous Fibonacci
numbers.

� Explicitly: specify the nth term as a function of n, where n takes integer values.

Examples

1. un=2n−1, n=1, 2, 3, . . . , again giving the first sequence above.

2. un=0.5n−1, n=1, 2, 3, . . . , again giving the second sequence above.

The Fibonacci sequence can also be defined explicitly — see Section 17.5.

There are basically two ways on the TI-84/CE to generate and display terms of a sequence —
using the sequence grapher and using LIST commands. Which method you use will depend
on how you teach the topic. Here we’ll look at both, using the above examples to illustrate
the methods. There are questions to practise on in Section 17.4.

2although we can have sequences of random numbers.
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17.2.1 Using the sequence grapher

Sequences can be defined either recursively or explicitly, displayed and graphed by the built-in

sequence grapher. To select this, press mode and, with the cursor and enter , select SEQ as
shown below.

TI-84Plus TI-84CE

The graphing mode SEQ is just one of four possible ways to define a function on the TI-84/CE.
Because a sequence is just a function as far as the calculator is concerned, all the calculator
graphing keys (top row) are relevant.

Now press the function-definition key y= to see the three sequences u, v, w available.

On a TI-84, the nth term u(n) can be written as any combination of n, u(n−1), u(n−2),
v(n−1), v(n−2), w(n−1) and w(n−2). There is more flexibility on a CE.

Arithmetic progression

In an arithmetic progression, there is a constant difference between successive terms. In
calculator notation, the recursive definition is

u(n) = u(n−1) + d,

where d is a constant called the common difference.

Example: u(n) = u(n−1) + 2, with u(1)=1.

Press y= and set this sequence up on your calculator as shown below. The independent

variable here, n, is produced by the X,T,θ, n key in SEQ mode. The sequence name u is 2nd

7 . The initial u value on a TI-84, u(nMin), must be in curly brackets (a list).

TI-84Plus TI-84CE

While we are on this screen, check that you have dots to the left of the definition of u(n),
indicating that only the sequence points will be plotted (no joining lines) when we graph the
sequence. If not, move the cursor here and press enter .

On a TI-84, press enter until three dots come up. On a CE, use the arrow keys to select bold
dots; you can select a different colour here too.

3
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Displaying the sequence

Here we use the table feature of the calculator.

First a table ‘window’: press tblset
(

2nd window
)

and set TblStart = 1 and ∆Tbl = 1.

Press table
(

2nd graph
)
. Scroll down in either column to see the terms of the sequence.

If you want to scroll up past the top of the screen, you have to be in the n column.

Another way of displaying terms of a sequence u is to type on the Home screen a command
of the form u (start, end [, increment ] ).
For example, typing u (1, 9, 2) and pressing enter will display u(1), u(3), u(5), u(7) and u(9).

increment is optional, a value of 1 assumed if it is not entered.

To display the value of just one term, just type u(n value), for example u(6), and press enter .

Graphing the sequence

There are several ways to graph sequences, as shown when you press format
(

2nd zoom
)
:

there’s an extra line here (the top one) in SEQ mode.

TI-84Plus TI-84CE

� Time plots u(n) against n, which is what we want here. Select it if necessary with the
cursor and enter .

� Web plots a cobweb plot, u(n) against u(n−1). We’ll look at this in Section 17.5.2.

� If you have more than one sequence, you can plot one sequence against another: uv, vw,
uw. These are called phase plots.

Next set a graph window: press window and you will see a few more parameters than usual.
In our Time plot, n is plotted along the X axis, so the n range should be contained within
the X range.

4
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Set up your window as shown below (not shown on the screen is Yscl = 10) and press trace .
Use the arrow keys to move along the points of the sequence.

Shortcut: Specify nMax, then press zoom 0 (ZoomFit); this sets appropriate X and Y

scales. You may want to change these a bit in window after the graph has been plotted.
Other zoom options, such as Zoom In and Zoom Box, work too.

Defining the AP explicitly

The nth term for a general arithmetic progression in calculator notation is

u(n) = a+ (n−1)d,

where a is the first term (n=1) and d is the common difference.

For our example, we have a=1 and d=2, so that

u(n) = 1 + 2(n−1).

We can compare the two definitions of the sequence by putting the nth term in sequence v,
as shown below. Note that v(nMin)/v(1) is not required when a sequence is defined explicitly
and should be cleared. Plot v as a solid line so you see which sequence is being plotted.

Now press graph and compare u and v. trace might be useful. You can also use table to

compare values of u and v.

Using the APGP/APGPCE program

This program calculates the Nth term of an AP, T(N) = A+(N−1)D, and the sum of N terms.
Useful if you need to do more than one or two of these.

5
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Geometric progression

In a geometric progression, each term is a constant multiple of the previous term. In calculator
notation, the recursive definition is

u(n) = ru(n−1),

where r is a constant called the common ratio or common multiplier.

Exercise: Display a table and graph the geometric sequence u(n)=0.5 u(n−1), with u(1)=1.

For the graph, use ZoomFit after specifying nMax in window .
Solutions to the exercises are in Section 17.6.

You may want to go back to window after the graph is plotted to adjust Xscl and Yscl so
there aren’t too many tick marks on the axes.

Press graph or trace to return to the graph after changing the window.

The nth term of a geometric progression is given explicitly by

u(n) = arn−1,

where a is the first term (n=1) and r is the common multiplier.

For the sequence in the exercise above, the nth term is given by

u(n) = 0.5n−1.

Exercise: Put this explicit definition in sequence v and compare with the recursive definition.

Using the APGP/APGPCE program

This program calculates the Nth term of an GP, T(N) = AR∧(N−1), and the sum of N terms.
Useful if you need to do more than one or two of these.

Fibonacci sequence

The Fibonacci sequence is defined, in calculator terms, by

u(n) = u(n−1) + u(n−2) with u(1) = u(2) = 1.

Press y= and enter this formula (below left).

On a TI-84, the two starting values u(1) and u(2) are stored in u(nMin) as a list: {1, 1}.

The graph here is of the first 10 points of the sequence (nMax = 10) plotted with Xmin = 0,
Xmax = 10, Xscl = 5, Ymin = 0, Ymax = 50 and Yscl = 10: i.e. a window [0, 10, 5]×[0, 50, 10].

6
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17.2.2 Using LIST commands

The seq command in the list
(

2nd stat
)

OPS menu generates a sequence (list) specified
by an explicit general term. The syntax is

seq
(
general term, variable, start, end [, step]

)
,

where variable can be any letter and step is assumed 1 if not given.3 The total number of
terms calculated must be less than 1000.4

With STAT WIZARDS on
(
in mode

)
, you get prompts for each of the entries in the seq

command. Alternatively, CtlgHelp (scroll down to seq in the list OPS menu and press + )
tells you what to input in the seq command and in what order.

Arithmetic progression

In the following sections, there is an implicit enter after each command.

To generate an AP: seq (1+2(N−1), N, 1, 10)

If the sequence goes off the right-hand side of the screen, you can scroll across using the
right-arrow key.

A nice way to use the general expression for an AP is

1→A : 2→D : seq (A+(N−1)D, N, 1, 10) : is alpha ·

Press entry
(

2nd enter
)

5 or use the up-arrow key and enter to recall the command,

change the values of A and D, and press enter to re-execute the command.

Storing to a list

For analysis and graphing, it is often convenient to store a sequence in a named list, which
is then stored in memory. The TI-84/CE has six built-in lists: L1 – L6; on the keyboard 2nd

1 – 2nd 6 . Lists can also be given any name of up to five characters.

To store a sequence to list L1,

seq (2N−1, N, 1, 10) → L1,

where → is the sto key. If you have already generated the sequence, just press → L1.

Now press stat 1 (Edit. . . ) to enter the list editor. You can scroll up and down, graph, edit
and carry out other operations on any list here.

3The variable in a seq command doesn’t have to take integer values, e.g. seq (sin(X), X, 0, 1, 0.05) generates
a sequence of values of the sine function.

4A list on the TI-84/CE can have a maximum of 999 entries. The same restriction applies to the seq
command even if you are not storing the sequence in a list, because the TI-84/CE keeps the sequence in an
internal list Ans.

5Pressing entry once recalls the previous command, twice the command before that, and so on. There is

limited memory for this, so you can’t go back indefinitely.
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Geometric progression

Try the following commands
(

enter after each
)
.

seq (0.5∧(N−1), N, 1, 10)

math 1 a useful command for sequences containing fractions

1→A : 0.5→R : seq (AR∧(N−1), N, 1, 10)

Exercise: Use entry
(

2nd enter
)

to produce terms 11 to 20 in the sequence.

Solutions to the exercises are in Section 17.6.

A neat trick for sequences

What we’d really like is an endless display of the sequence terms. This is provided in table

by evaluating the continuous function corresponding to our sequence at integer values of its
argument. This is a good way to start sequences — see the Class Activity below.

Select FUNC(TION) in mode to return to the normal type of graph.

In y= : Y1 = 0.5∧(X−1).

In tblset : TblStart = 1 ∆Tbl = 1.

Press table .

Scroll down in the Y1 column (the sequence terms) to see more digits for each entry at the
bottom of the screen.

Provided TblStart and ∆Tbl are integers, we get sequence values in the table. This is an
alternative to using the sequence grapher to generate a table, and is usually faster.

17.2.3 Using the SEQUENCE/SEQNCECE program

Given an infinite sequence {AN}, what is the limit of the sequence, i.e. what is lim
N→∞

AN?

The program evaluates AN for N=1, 2, 4, 8, 16, 32, . . . as an aid to estimating the limit.

Use: Store the Nth term AN in Y1 (in terms of N).

Run the program. Press enter to see successive values. Be wary of round-off error for large
N. Stop the program at any time by pressing on Quit.

We could do the calculation using Sequence mode on the calculator, but this is much slower.

Example: AN =(1+1/N)N → Y1 = (1+N−1)∧N

A1 = 2
A2 = 2.25
A4 = 2.4414065
A8 = 2.565784514
A16 = 2.637928497

...
lim
N→∞

AN = ?

You may see the effect of roundoff error if you let N become large enough.

8
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Class Activity

Give students one calculator between two. Have them press tblset
(

2nd window
)

and set
both TblStart and ∆Tbl to 1.

On the viewscreen calculator, with the OHP turned off, set Y1 = 2X+1 and press table . Turn
the OHP on and ask the students: What’s the rule? If you don’t have a viewscreen (or a
TI-84/CE emulator on a computer), just write the numbers up on the board.

When they have worked out the rule as a class, press y= to show them (or just tell

them) how the rule is entered. Have them enter the rule and generate the table. Write on
the board that the rules to follow are all of the form X + .

Now, again with the OHP off, enter a different rule and show them the table. Ask them to
make the table on their calculators the same.

Give them various rules to find, moving eventually to negative numbers for the coefficients.
Ask them to summarise their findings regarding the two numbers in the rules.

17.3 Series

A series is a sequence with + signs between successive terms. The sum of a series is the actual
value when we carry out the additions. To calculate the sum of a series, we need to find the
terms in the corresponding sequence, then add them up.

If a series has a finite number of terms, we just add them up to give the sum. All of what we
do below can be applied to finite series. However, the more interesting series are infinite —
we can’t calculate the sum for these by carrying out the additions because there is an infinite
number of them.6

However, we can work out the sum of a finite number of terms, called a partial sum — the
nth partial sum is the sum of the first n terms of the series. The behaviour of the partial
sums as n gets bigger tells us something about the convergence of the series — whether the
sum may be a finite number or infinite. The sum of an infinite series is defined as the limit
of its partial sums as n→∞.

Both the sequence grapher and the list commands can be used to sum a series, but, unless
we are quite clever (see Section 17.3.3 below), both methods require an explicit nth term.

Because of this, the list commands are probably simpler, and the ‘neat trick’ above, suitably

modified (see Section 17.3.2), allows us to use table . However, the sequence grapher is easier
to use if we want a graph of the partial sums.

The SERIES/SERIESCE program (Section 17.3.3) combines the speed of the list commands
with the flexibility of the sequence grapher. It is available at canberramaths.org.au under
Resources.

6There are algebraic methods for summing some infinite series, one of the triumphs of Calculus.
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17.3.1 Using the sequence grapher

The nth partial sum Sn of a series is the sum of the first n terms:

Sn = u1 + u2 + u3 + · · ·+ un =
n∑
i=1

ui.

Recursively, Sn is the sum of the previous n terms, Sn−1, plus the nth term:

Sn = Sn−1 + un S1 = u1.

We’d like to generate the sequence of partial sums

S1, S2, S3, S4, S5, . . . .

We’ll use the sequence v in the sequence grapher for the partial sums: v(n) will be the nth
partial sum of the sequence we put in u(n).

Re-select SEQ in mode to return to the sequence grapher if necessary.

Arithmetic progression

For our AP, with nth term u(n) = 1+2(n−1), we have for the nth partial sum

v(n) = v(n−1) + u(n), with v(1) = 1,

as shown below centre.

Note: On a TI-84, the sequence grapher only lets us use the (n−1)th and (n−2)th terms in
the definition of an nth term, so we have to use the following for v (left-hand figure below):

v(n) = v(n−1) + 1+2(n−1), with v(1) = 1.

The table of partial sums can now be displayed as usual (above right); the terms of the
sequence are shown in the u(n) column and the corresponding partial sums in the v(n) column.

Geometric progression

Exercise: Set up the table of partial sums for our GP with u(n)=0.5n−1.

To what value does the (infinite) series appear to converge?

Confirm your answer algebraically (using the usual formula for the infinite sum of a GP).

Solutions to the exercises are in Section 17.6.
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17.3.2 Using LIST commands

The sum command in the list MATH menu sums a sequence (list). The syntax is

sum (list),

where list can also be a seq command.

The cumSum command in the list OPS menu generates a sequence of partial sums. The
syntax is

cumSum (list).

Arithmetic progression

sum (seq (1+2(N−1), N, 1, 20)) finds the sum of the first 20 terms in our AP.

cumSum (seq (1+2(N−1), N, 1, 20)) generates the first 20 partial sums of our AP: the ith entry
is the sum of the first i terms.

The sum of an infinite series is defined as the limit as n→∞ of the nth partial sum. Scrolling
across a list like the one above can give an idea of what that limit might be. Here, of course,
there is no limit — the nth partial sum →∞ as n→∞.

If you prefer scrolling up and down, rather than side to side, store the partial sums to a list(
sto L1 enter

)
and use stat Edit .

Geometric progression

sum (seq (0.5∧(N−1), N, 1, 20))

cumSum (seq (0.5∧(N−1), N, 1, 20))

Exercise: What’s the sum of the GP 1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . . ?

You might want to use entry to change the end value for N in the first command above to
be (almost) sure.

Solutions to the exercises are in Section 17.6.
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A neat trick for partial sums

Again we’d really like an endless sequence of partial sums. Try this.

Select FUNC(TION) in mode .

In y= : Y1 = sum (seq (0.5∧(N−1), N, 1, X)).

In tblset : TblStart = 1 ∆Tbl = 1.

Press table . Scroll down in the Y1 column (the partial sums) to see more digits at the
bottom. What’s your best estimate for the sum?

Why does this work? In generating the table, the calculator takes a given value of X, an
integer in this case generated by the values of TblStart and ∆Tbl, and puts it in the formula
for Y1, giving the partial sum of X terms. It then displays the result in the Y1 column of the
table. TblStart and ∆Tbl must be integers.

17.3.3 Using the SERIES/SERIESCE program

We can get around the problem of not being able to sum recursively defined sequences, such
as the Fibonacci sequence, by a combination of methods. If we define the sequence as usual
in u(n), then use the ‘neat-trick’ idea by setting Y2 = sum(seq(u(n),n, 1, X)), we end up with
the Y2 column in the table giving the partial sums of the sequence/series. If we also set
Y1 = u(X), we have the sequence values in the Y1 column.

The SERIES/SERIESCE program sums series defined either recursively (using the above
method) or explicitly. Run the program, select how the nth term is specified, enter the
appropriate definition and:

� generate a table of sequence values and corresponding partial sums. Once a table
has been generated, you can change TblStart to look at the partial sums starting at
different values of N, and increase ∆Tbl to move through the partial sums more quickly,
for example to examine the convergence or otherwise of the series.

� graph the partial sums. Somtimes a graph gives a better idea of where the partial sums
are heading than a table.

� use FAST SUM to calculate a particular partial sum faster.

The SERIES/SERIESCE program is a useful tool for investigating infinite series.

Exercise: Use the SERIES/SERIESCE program to generate a table and a plot of the first 20
partial sums of:

1. the GP with nth term u(n)=0.5n−1;

2. the Fibonacci sequence.

Solutions to the exercises are in Section 17.6.
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17.4 Questions

Solutions to the questions are in Section 17.6.

1. Generate a sequence of the cubes of first 10 positive integers using a LIST command.
Store the sequence in a list. Use the sum command to evaluate 13 + 23 + · · ·+ 103.

2. Find the sum of the first 10 terms of the series 1 +
1

23
+

1

33
+

1

43
+ . . . .

3. (a) Use a single command to find the sum of the first 100 positive integers. Store the
answer in memory S for use in (c).

(b) Edit your command in (a) to find the sum of the cubes of the first 100 positive
integers.

(c) Which is bigger: the sum of the cubes of the first 100 positive integers or the cube
of the sum of the first 100 positive integers?

4. The half-life of a certain radioactive substance is 1 week. This means that, of the amount
present at a particular time, only half will be left a week later. Suppose 1000 grams of
the substance exists today, the beginning of Week 1.

(a) Write down the amount left at the beginning of Week 2, Week 3, . . . , Week 10.

(b) Determine an infinite geometric sequence (recursive or explicit) that is a model of
the amount of the substance at the beginning of Week n, where n = 1, 2, 3, . . . .
What is the common ratio of this sequence?

(c) When will there be only 0.005 grams remaining?

(d) How much of the substance was there a week ago (beginning of Week 0)?

(e) When will the substance be reduced to nothing according to this model?

5. The height of a particular fast-growing plant increases at the rate of 2.5% per month.
Assume the plant is 30 cm high today and that it dies after 12 months.

(a) Determine a finite geometric sequence that is a model of the height of the plant
after n months. Write out all the terms of the sequence. What is the common
ratio?

(b) How long would the plant have to live to double in height?

6. Sue had $1250 in a savings account 3 years ago. How much will be in her account 2
years from now, assuming no deposits or withdrawals are made and the account earns
6.5% interest compounded annually?

7. Frank has $12,876 in a savings account today. He made no deposits or withdrawals
during the last 6 years. What was the value of his account 6 years ago? Assume that
the account earned 5.75% interest compounded monthly.

PTO
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8. Generating sequences recursively is equivalent to another mathematical process called
iteration, in which we do the same operation over and over. Try some of the following
sequences/iterations.

Generate some terms in each sequence. What happens to u(n) in each sequence as n
becomes large? Be careful with brackets.

(a) u(n) =
(
u(n−1)

)2
. Try u(1)<−1; u(1) =±1; −1<u(1)<1; u(1)>1.

(b) u(n) = (u(n−1))2 − 1 with −2<u(1)<2.

What happens if we set

u(1)= 1
2

(
1+
√

5
)

=1.618 . . . ?

u(1)= 1
2

(
1−
√

5
)

=0.618 . . . ?

(c) u(n) =
√

u(n−1).

(d) u(n) = cos
(
u(n−1)

)
.

(e) u(n) = tan
(
u(n−1)

)
.

9. What value does the sequence

(
1+

1

n

)n
approach as n gets larger and larger?

Hint : Use a sequence command with a step of at least 1000. Or apply the neat-trick
method for sequences: set Y1 = (1+1/X)X and use a suitably large ∆Tbl, say 1000.

10. What is
∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . ? factorial ! is in the math PRB menu.

The cumSum(seq combination works well here, as we don’t need too many terms to see
the convergence of the partial sums. Store 20 or so terms in a list to make it easier to
see the partial sums or use the neat trick for series. Note that the sum starts at n=0.

What is
∞∑
n=0

2n

n!
?

∞∑
n=0

xn

n!
, where x is any number?

The following questions are from Chapter 9 of Intermediate Algebra: Functions and
Graphs by K. Yoshiwara and B. Yoshiwara, Thomson Brooks/Cole, 2004.

11. Generate a table of values for each of the following recursive sequences. What happens
to the terms as n gets larger? Do you recognise the number?

Hint : The answers for the first two sequences are square roots of particular numbers.
Can you make and test a conjecture here? Write down a sequence whose limit is 2;

√
5.

The answers for the last two sequences should be obvious.
Can you make and test a conjecture here? Write down a sequence whose limit is 4; 5.

(a) a1 =1 an =
1

1+an−1

+ 1 (b) b1 =1 bn =
2

1+bn−1

+ 1

(c) s1 =1 sn =
1

2

(
sn−1 +

4

sn−1

)
(d) t1 =1 tn =

1

2

(
tn−1 +

9

tn−1

)
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12. A rubber ball is dropped from a height of 8 metres and returns to three-quarters of its
previous height on each bounce.

(a) How high does the ball bounce after hitting the floor for the 3rd time? for the 10th
time? for the nth time?

(b) How far has the ball travelled vertically when it hits the floor for the 4th time? for
the 20th time? for the bth time?

13. According to legend, a man who had pleased the Persian king asked for the following
reward. The man was to receive a single grain of wheat for the first square of the
chessboard, 2 grains for the second square, 4 grains for the third square, and so on,
doubling the amount for each square up to the 64th square. How many grains would he
receive in all. (Fortunately the king had a good sense of humour.)

14. Find the sum of all integral multiples of 6 between

(a) 10 and 100.

(b) between 1 and 10, 000.

PTO
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17.5 Further investigations

17.5.1 Fibonacci numbers

Fibonacci (fib–on–archie), real name Leonardo Pisano (Leonardo of Pisa), was born in about
1170. He too thought about populations, but much earlier than Malthus.7 One of his problems
concerning a rabbit population led to the famous Fibonacci numbers or Fibonacci sequence

1 1 2 3 5 8 13 . . . .

The Rule: Add the previous two numbers to get the next number (after starting with 1 1) .

Exercise: Write down the first twenty Fibonacci numbers.
Solutions to the exercises in this section are in Section 17.6.

Here is Fibonacci’s rabbit problem. See if you can understand why the Fibonacci numbers
give the number of pairs of rabbits each month and answer the question. The diagram might
help.

Exercise: A pair of new-born rabbits is put in a pen. How many pairs of rabbits are there
after a year if, every month, each adult pair produces a new pair? The rabbits become adult
one month after birth.

In the diagram, an open circle represents a pair of immature rabbits (too young to breed)
and a shaded circle a pair of mature breeding rabbits. The arrows lead to offspring. Adding
the number of circles for each month gives the number of pairs of rabbits — the Fibonacci
numbers.

Note that the growth here is not exponential (we are not multiplying by a constant to obtain
the next number), but the number of rabbits still increases rapidly.

PTO

7see Population Modelling 1 in Volume 1 of this book
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The Fibonacci sequence and the Golden Ratio

Here is one illustration of the many interesting properties of the Fibonacci sequence.

1. Generate a table of values of the sequence (be very careful with brackets)

un =
1√
5

(
1+
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

Do you recognise this sequence?

2. One of the many interesting things about the Fibonacci sequence becomes apparent
when we look at ratios of successive terms. Using the sequence grapher, set

u(n) = u(n−1) + u(n−2) u(1) = 1, u(2) = 1 8

to generate the Fibonacci sequence, and

v(n) = u(n−1)/u(n−2)

to calculate the ratios of successive terms.

Put TblStart = 3, ∆Tbl = 1 and generate the table of values.

Scroll down and look at the v(n) column containing a sequence of the ratios of successive
terms of u(n). Does this sequence appear to be approaching a particular value? What
value? Find this value accurate to six decimal places.

Now find a decimal value for the Golden Ratio or Golden Section,
1+
√

5

2
.

What conclusion do you reach?

The Golden Number/Ratio/Section

The Golden Ratio (also called the Divine Proportion) is denoted by the Greek letter φ or
τ . If a length is divided in the Golden Ratio 1 :φ, the ratio of the longer part to the whole,
φ :1+φ, is also the Golden Ratio. When used to construct a rectangle, this ratio was thought
to make the rectangle pleasing to the eye. Hence the Golden Ratio occurs everywhere, and has
supposedly been used to design buildings from the Parthenon to the United Nations building
in New York, as well as by artists and musicians. It is closely connected with the Fibonacci
series, and has a value of (1+

√
5)/2=1.61803 . . . .

Fibonacci numbers are evident in particular (equi-angular or logarithmic) spirals which appear
frequently throughout the natural world — in things as small as the double helix and other mi-
croscopic twisting structures, to the galaxies that move in equi-angular spirals. These spirals
also account for gastropods growing while maintaining their shape. In order for all leaves on a
stem to catch sunlight, they are arranged in equiangular spirals that incorporate the Fibonacci
numbers. Other examples of this natural phenomenon include pine-cone seeds, flower petals,
sunflower seeds, the horns of mountain goats, elephant tusks, lions’ claws, scales in pineapples,
and so on. Find out more at www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html.

8On a TI-84, set u(nMin) = {1, 1}.
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17.5.2 The logistic sequence

The logistic sequence or logistic map has become famous because it is one of the simplest
sequences that exhibits chaotic behaviour. It also turns up in a number of areas such as
population modelling.9

The logistic sequence is defined by (be very careful with brackets)

u(n) = Au(n−1)
(
1−u(n−1)

)
,

where A is a constant.

The following figures show the set up for time plots, u(n) vs n, on the left and for cobweb

plots, u(n) vs u(n−1), on the right.

The top line of the format screen is where you choose which plot you want.

� Note that nMin = 0 here and we have taken u(0) = 0.5.10 The value for u(0) can be
changed in subsequent plots.

� Store a value for A
(
0<A<4

)
in memory A and press trace .

� For a cobweb plot, keep pressing the right arrow to generate the plot.

The curves y = Ax(1−x) and y = x are also plotted; the cobweb lines move between
these two curves.

2nd quit returns you to the Home screen.

� The TI-84/CE program11 CHAOS/CHAOSCE makes the process of graphing the logistic
sequence a bit easier, allowing you to concentrate on the effects of changing A and u(0).

format

PTO

9For examples, see Population Modelling 2 in Volume 2 of this book.
10u(nMin)={0.5} on an 84
11available at canberramaths.org.au under Resources
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Time Web

window

A = 2.9

A = 3.2

A = 3.7
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Exercise: Confirm graphically (by choosing appropriate values for A) that the logistic se-
quence:

� converges to 0 for 0<A<1;

� converges to 1−1/A for 1<A<3;

� oscillates between 2 values, then 4 values, 8 values and so on, as A is increased above 3;

� becomes chaotic for values of A greater than about 3.568;

� diverges rapidly to ±∞ for values of A greater than 4 or values of a1 less than 0 or
greater than 1

Try both Time and Web plots.

Solutions are in Section 17.6.

PTO
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17.5.3 The harmonic series

The harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

has many interesting properties.12

1. Use the neat-trick method to generate the partial sums, starting with the first.

Then press tblset and change Indpnt to Ask using the cursor and enter . Press table .

Now you can input the number of terms (X) in the partial sum, up to X = 999, and the
calculator will calculate the corresponding partial sum (Y) .
Does the series appear to be converging?

2. The seq command can only generate up to 999 terms. To sum more terms than this, we
need a program. Use FAST SUM in the SERIES/SERIESCE program (Section 17.3.3)
to find the sum of the harmonic series to 2000 and 4000 terms. Record the number of
terms and the partial sum in a table, continuing on from your calculator table in Q1.
Continue the table for as long as you have patience. Doing something else while the
program runs is a good idea. The CE is actually quite quick.
Does the series appear to be converging?

3. Graph the data using the SERIES/SERIESCE program.

What can you conclude about the harmonic series?

4. There is an approximation to the partial sums of the harmonic series,

m∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

m
≈ 1

2m
+ ln(m) + γ,

where γ = 0.5772 . . . is the Euler or Euler-Mascheroni constant.

Check this approximation against the values you found in Q1 and Q2. To compare with
your values in 1, set Y2 = (2X)−1 + ln(X) + 0.5772 and use the table.
What do you conclude?

5. Find the next few decimal places in the Euler-Mascheroni constant.

6. Find out what you can about the Euler-Mascheroni constant.

Solutions are in Section 17.6.

12The series does not converge — the more more terms you take, the larger the sum, despite the fact that
the terms tend to 0 as n→∞.
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17.6 Solutions to exercises, questions and activities

Exercises

Exercise page 6

Display a table and graph the geometric sequence u(n) = 0.5 u(n−1), with u(1) = 1.

Exercise page 6

Put this explicit definition in sequence v and compare with the recursive definition.

The two sequences are identical.

Exercise page 10

Set up the table of partial sums for our GP with u(n) = 0.5n−1.

To what value does the (infinite) series appear to converge: 2.

Confirm your answer algebraically (using the usual formula for a GP).

Here a=1 and r=0.5, so that

S∞ =
a

1−r
=

1

1−0.5
= 2.
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Exercise page 11

What’s the sum of the GP 1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . . ?

You might want to use entry to change the end value for N to be (almost) sure.

From the figure, we are pretty sure the sum of the GP is 2.

Exercise page 12

Use the SERIES/SERIESCE program to generate a table and a plot of the first twenty partial
sums of:

1. the GP with nth term u(n)=0.5n−1

2. the Fibonacci sequence: u(n)=u(n−1)+u(n−2); u(1) = u(2) = 1.
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Questions page 13

1. The command is seq (X3, X, 1, 10) sto L1. You can use any letter instead of X: X
is easiest to use because it requires only one key press. If you just execute the seq
command, the combination sto L1 on the next line produces the output Ans→ L1 and
stores the sequence. To calculate the sum, use sum (L1) to produce the answer 3025.

2. The command is sum (seq (1/X3, X, 1, 10)), giving 1.197531986.

3. (a) The sum of the first 100 positive integers is
sum (seq (X, X, 1, 100) = 5050.

(b) The sum of the cubes of the first 100 positive integers is
sum (seq (X3, X, 1, 100) = 25, 502, 500 = 2.55×107 to 3 significant digits.

(c) The cube of the sum of the first 100 positive integers is 50503≈1.29×1011, larger
than the sum of the cubes of the first 100 positive integers.

4. (a) The amount of radioactive substance in grams at the beginning of successive weeks,
starting at Week 1, is (to two decimal places)

1000, 500, 250, 125, 62.5, 31.25, 15.63, 7.81, 3.91, 1.95.

(a) Explicitly, the amount at the beginning of Week n is un = 1000
(
0.5
)n−1

. Recur-
sively, u(n) = 0.5u(n−1), with u(1) = 1000. The common ratio here is 0.5.

(b) Using a calculator table with Y1 = 1000
(
0.5
)X−1

or a table generated from the
recursive definition using the sequence grapher, there is 0.005 g remaining sometime
in Week 18, i.e. between n=18 and n=19.
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(c) A week ago (beginning of Week 0), there was twice as much as there is now (be-
ginning of Week 1), that is 2000 g.

(d) According to this model, there will always be some of the substance left, although
the amount becomes small very rapidly. You can’t reduce any number to 0 by
dividing it by 2 or raising it to a power.

5. (a) The height n months from now is un = 30
(
1+ 2.5

100

)n
= 30

(
1.025

)n
, n=1, 2, . . . , 12.

The table below shows months (top row) and corresponding heights, rounded to
one decimal place.

0 1 2 3 4 5 6 7 8 9 10 11 12

30 30.8 31.5 32.3 33.1 33.9 34.8 35.7 36.6 37.5 38.4 39.4 40.4

The common ratio is 1.025.

(b) Using the calculator table (remember to use X instead of n if you don’t use the
sequence grapher), the plant would double in height in the 29th month.

6. Let Sn be the amount of money in Sue’s account at the start of year n, with n = 1
corresponding to 3 years ago. Then,

Sn = 1250

(
1 +

6.5

100

)n−1

= 1250
(
1.065

)n−1
.

In 2 years’ time, n=1+5=6, so the amount of money in her account will be

S5 = 1250
(
1.065

)5
= $1712.61 to the nearest cent.

You could also use the calculator table to reach this answer.

7. The amount in Frank’s account is given by

Sn = 12876

(
1 +

5.75

12× 100

)12(n−1)

= 12876

(
1 +

0.0575

12

)12(n−1)

,

where n=1 corresponds to now.

Six years ago, n=−5, and the amount in Frank’s account was

S−5 = 12876

(
1 +

0.0575

12

)−72

= $9126.56 to the nearest cent.

You could also use the calculator table (scroll up) to reach this answer.

8. (a) Set u(n) =
(
u(n−1)

)
2 in the sequence grapher, set u

(
nMin

)
/u(1) to an appropriate

starting value and use the table to see what happens as n becomes large, the limit
of the sequence.

Initial value Limit of sequence

u(1)<1 ∞

u(1) =−1 1

−1<u(1)<1 0

u(1) = 1 1

u(1)>1 ∞
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(b) Set u(n) =
(
u(n−1)

)
2−1.

Initial value Limit of sequence

u(1)<−1.618 . . . ∞

u(1) =−1.618 . . . −1.618 . . . (constant)

−1.618 . . .< u(1)<−0.618 . . . oscillates between 0 and −1

u(1) =−0.618 . . . −0.618 . . . (constant)

−0.618 . . .< u(1)<0.618 . . . oscillates between 0 and −1

u(1) = 0.618 . . . −0.618 . . . (constant)

0.618 . . .< u(1)<1.618 . . . oscillates between 0 and −1

u(1) = 1.618 . . . 1.618 . . . (constant)

u(1)>1.618 . . . ∞

(c) u(n) =
√

u(n−1) gives 0 if u(1) = 0, and tends to 1 otherwise.

(d) u(n) = cos
(
u(n−1)

)
tends to 0.7391. . . in radian mode and 0.99985. . . in degree

mode.

(e) u(n) = tan
(
u(n−1)

)
looks several times as though it is going to settle down to a

limit, but never does.

9. The sequence

(
1+

1

n

)n
approaches the value e=2.71828 . . . as n goes to ∞.

10.
∞∑
n=0

1

n!
= e;

∞∑
n=0

2n

n!
= e2;

∞∑
n=0

xn

n!
= ex, the Taylor-MacLaurin series for ex.

11. (a) approaches
√

2; (b) approaches
√

3; (c) approaches 2; (d) approaches 3.

12. (a) The following table gives the rebound height after bounce n.

n 1 2 3 4 . . .

Height (m) 6 9
2

27
8

81
32 . . .

The rebound height after the 3rd bounce is therefore 27/8 m.

The rebound height after bounce n is 6
(
0.75

)n−1
m. Therefore, after the 10th

bounce, the rebound height is 6
(
0.75

)9 ≈ 0.45 m.

Alternatively, put Y1 = 6
(
0.75

)X−1
and use the table.
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(b) The total distance travelled is 8 + 2× each rebound height, i.e.

8 + 2

(
6 +

9

2
+

27

8
+

81

32
+ . . .

)
.

When the ball hits the floor for the 4th time, it has travelled

8 + 2

(
6 +

9

2
+

27

8
+

81

32

)
= 35.75 m.

Therefore, the distance travelled when it hits the floor for the bth time (b>2) is

8 + 2
b−1∑
n=1

6
(
0.75

)n−1
= 8 + 12

b−1∑
n=1

0.75n−1.

Therefore, when the ball hits the floor for the 20th time, it has travelled

8 + 12
19∑
n=1

0.75n−1 ≈ 55.8 m.

Here, use the command 8 + 12 sum (seq (0.75∧(B−1), B, 1, 19)) to do the calculation.

13. Number of grains = 1 + 2 + 4 + 8 + 16 + . . . =
64∑
n=1

2n−1 ≈ 1.89×1019.

Use sum (seq (2∧(N−1), N, 1, 64)) to calculate this.

To put this number into context, 1018 grains would be about the same volume as the
Great Wall of China and the five Great Pyramids combined.13

14. We need to evaluate
b∑

n=a

6n, where

(a) 6a is the smallest multiple of 6 greater than 10 and 6b is the largest multiple of 6
less than 100. Clearly, a=2 and b=16, so that the required sum is

16∑
n=2

6n = 810,

where we used the command sum (seq (6N, N, 2, 16)).

PTO

13From Large Numbers by Victor Scharaschkin, Australian Senior Mathematics Journal 4 (2), 111–125
(1990).
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(b) 6a is the smallest multiple of 6 greater than 1 and 6b is the largest multiple of 6
less than 10,000. Clearly, a=1 and b is the integer part of 10,000/6, that is 1666.
The required sum is

1666∑
n=1

6n = 8, 331, 666.

We can’t use the single command sum (seq (6N, N, 1, 1666)) here because there
are more than 999 terms in the series. Either break the sum up into two parts,
sum (seq (6N, N, 1, 999)) and sum (seq (6N, N, 1000, 1666)), and add the two an-
swers, or use the SERIES/SERIESCE program.

Activities

Rabbits and Fibonacci Numbers

The first twenty Fibonacci numbers are

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765.

How many pairs will there be in one year?

1. There is only 1 pair of immature rabbits during the first month.

2. At the beginning of the 2nd month they mate, but there is still only 1 pair during the
month.

3. At the beginning of the 3rd month the female produces a new pair, so now there are 2
pairs of rabbits in the pen.

4. At the beginning of the 4th month, the original female produces a second pair, making
3 pairs in all in the pen.

5. At the beginning of the 5th month, the original female has produced yet another new
pair, while the female born 2 months ago produces her first pair, making 5 pairs in all.

and so on.

The number of pairs of rabbits after one year is the 12th Fibonacci number, 144 pairs.

Why do the Fibonacci numbers appear as the number of rabbits in the pen each month?

If we let f(n) be the number of pairs of rabbits in the pen at the start of the nth month, we
will show that f(1)=1, f(2)=1 and f(n)=f(n−1)+f(n−2), which is exactly the definition
of the Fibonacci numbers.

We start in month 1 with one newly born pair, so f(1)=1.

There is also only 1 pair during month 2, since although the adults mate at the start of month
2, babies are not born until the start of month 3: f(2)=1.

Now look at the nth month.

All the rabbits from the previous month (f(n−1) pairs of them) survive. Any rabbit (pair)
that was alive 2 months ago is now able to produce a new pair; we assume they produce 1
and only 1 new pair per month. Thus, the number of newly born pairs is the same as the
number of pairs alive 2 months ago, f(n−2). The total number of rabbits this month is the
sum of all the rabbits alive last month and those that are newly born this month, that is
f(n)=f(n−1) + f(n−2) — the definition of the Fibonacci numbers.
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The Fibonacci sequence and the Golden Ratio page 17

1. Generate a table of values of the sequence (be very careful with brackets)

un =
1√
5

(
1+
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

Do you recognise this sequence? It’s the Fibonacci sequence.

2. One of the many interesting things about the Fibonacci sequence becomes apparent
when we look at ratios of successive terms. Using the sequence grapher, set

u(n) = u(n−1) + u(n−2) u(1) = 1, u(2) = 1 14

to generate the Fibonacci sequence, and

v(n) = u(n−1)/u(n−2)

to calculate the ratios of successive terms.

Put TblStart = 3, ∆Tbl = 1 and generate the table of values.

Scroll down and look at the v(n) column containing a sequence of the ratios of successive
terms of u(n).

14On a TI-84, set u(nMin) = {1, 1}.
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Does this sequence appear to be approaching a particular value? What value? Find
this value accurate to six decimal places.

From the table, the ratio is approaching 1.618034 (to 6 decimal places); all values after
v(17) round to this value.

Now find a value for the Golden Ratio or Golden Section,
1+
√

5

2
.

1+
√

5

2
= 1.618034 to 6 decimal places.

What conclusion do you reach?

The ratio of successive terms in the Fibonacci sequence tends to the Golden Ratio as
n→∞.

The harmonic series page 21

The harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

has many interesting properties.

1. Use the neat-trick method to generate the partial sums, starting with the first.

Then press tblset and change Indpnt to Ask using the cursor and enter . Press table .
Now you can input the number of terms (X) in the partial sum, up to X = 999, and the
calculator will calculate the corresponding partial sum (Y).

Does the series appear to be converging?

Not obvious one way or the other.

PTO
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2. The seq command can only generate up to 999 terms. To sum more terms than this, we
need a program. Use FAST SUM in the SERIES/SERIESCE program (Section 17.3.3)
to find the sum of the harmonic series to 2000 and 4000 terms. Record the number of
terms M and the partial sum in a table, continuing on from your calculator table in
Question 1. Continue the table for as long as you have patience.

Table values rounded to 3 decimal places. Approx refers to Question 4.

M Sum Approx

100 5.187 5.187

200 5.878 5.878

300 6.283 6.283

400 6.570 6.570

500 6.793 6.793

600 6.975 6.975

700 7.129 7.129

800 7.263 7.263

900 7.380 7.380

999 7.484 7.484

2000 8.178 8.178

4000 8.871 8.871

6000 9.277 9.277

8000 9.564 9.564

10,000 9.788 9.788

20,000 10.481 10.481

30,000 10.886 10.886

40,000 11.174 11.174

Does the series appear to be converging?

Still not clear.

3. Graph the data using the SERIES/SERIESCE program.

What can you conclude about the harmonic series?

Still not clear.

PTO
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4. There is an approximation to the partial sums of the harmonic series,

M∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

M
≈ 1

2M
+ ln(M) + γ,

where γ=0.5772 . . . is the Euler or Euler-Mascheroni constant.

Check this approximation against the values you found in Questions 1 and 2. To compare
with your values in 1, set Y2 = (2X)−1 + ln(X) + 0.5772 and use the table.

See the table in Question 2.

What do you conclude?

The approximation is accurate to 3 decimal places for M up to at least 40, 000.

5. Find the next few decimal places in the Euler-Mascheroni constant.

Rewriting the equation above for the approximation to the partial sums of the harmonic
series,

γ =
M∑
n=1

1

n
−
(

1

2M
+ ln(M)

)
.

Setting Y1 = sum(seq(1/N, N, 1, X))− ((2X)−1+ ln(X)) and using the table gives, from
comparing the values for X = 900 and X = 999, γ=0.5772156.

To go further, we need to use the program.

M = 10, 000 γ = 0.577 215 664 1

M = 20, 000 γ = 0.577 215 664 7

M = 30, 000 γ = 0.577 215 664 8

M = 40 ,000 γ = 0.577 215 664 8

From this process, we obtain γ = 0.577 215 664 8, probably accurate to this number of
decimal places ±1 in the last place.

Wolfram Mathworld: γ=0.577 215 664 901 532 860 606 512 090 082 402 431 042 . . .

Evidently, the larger M, the better the approximation to the partial sums of the har-
monic series, and hence the more accurate the value we obtain for γ.

As a corollary, ln(M)→∞ as M →∞, so the harmonic series must diverge.
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18 Probability and Statistics 2

Probability Distributions and Hypothesis Testing

18.1 Introduction

Probability and Statistics 1 in the first volume of this book dealt with descriptive statistics,
that is using the calculator to store, process and display statistical data. Here, we deal with
discrete and continuous probability distributions, and hypothesis testing. We end with a
section on gambling systems as a ‘practical’ example.

The most comprehensive calculator book I have seen on this topic is Probability and Statistics
with the TI-83 Plus: For A-Level Mathematics by Peter Jones and Chris Barling.15 Sadly,
this is no longer readily available; if you have a copy, treasure it. They explain everything in
great detail, with large numbers of screen shots. The exposition here is somewhat briefer but
I’ll follow their general outline, and even borrow some of their examples (labelled JB). Most
of the exercises are also from there.

Some of the examples and exercises are from the course notes for a first-year introductory
Statistics course by Dr Leesa Sidhu of UNSW Canberra.

What follows is not a textbook on Probability and Statistics (you’ll need one) but how to do
the various operations in such a course on a TI-84/CE graphics calculator. This replaces the
various tables usually used in such courses, and makes many of the calculations quite simple.
As always, students should do all these operations by hand first, so that they understand the
process but, ultimately, always having to do the calculations manually stands in the way of
doing any meaningful modelling and interesting applied problems.

18.1.1 Australian Curriculum

References are given here to the texts Nelson Senior Maths Methods 11 for the Australian
Curriculum (NSM11) and Nelson Senior Maths Methods 12 for the Australian Curriculum
(NSM12) used in the ACT.

The material here is relevant to the topics Discrete random variables (Chapter 2 in NSM12),
Binomial distributions (Chapter 5 in NSM12), Continuous random samples and the normal
distribution (Chapter 8 in NSM12), Random samples and proportions (Chapter 9 in NSM12),
and Confidence intervals (Chapter 10 in NSM12).

18.1.2 Calculator note

There are four options on the calculator that can help with the calculations here.

MATHPRINT

In CLASSIC mode, commands are typed on one line, with arguments in brackets. In MATH-

PRINT mode, the calculator tries to display commands in mathematical notation, with small
boxes in the relevant positions for the inputs. This really only applies to the powers and roots
(blue) commands on the keyboard and to many of the commands in the math NUM menu,
and so is of limited use in the Probability and Statistics operations here; where it applies, it
is illustrated with a screen shot. Set CLASSIC or MATHPRINT in mode .

15Cambridge University Press, 2002, ISBN 0 521 52531 4
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Catalog Help

An app on the TI-84Plus,16 built in to the operating system of a TI-84CE, this tells you what
arguments are required for most of the commands on the calculator in CLASSIC mode, allows
you to input the arguments and paste the whole command onto the Home screen. Activated
by scrolling down to the particular command and pressing + .

STAT WIZARDS

An alternative to Catalog Help, and much more useful
here than MATHPRINT, this provides a menu for inputs
to most of the commands and tests in stat CALC and
stat TESTS, rather than having to type these into a
one-line command in the correct order. It also works for
some operations in the math PROB menu.

Turn STAT WIZARDS on in mode and leave on. It is
used in most of the examples here.
Turn on STAT DIAGNOSTICS too while you are here.

Prob Sim app

This app17 simulates a number of different ways of
obtaining random data normally done with physical
materials (see the figure).
You can simulate single or multiple occurrences,
with the outcomes summarised in on-screen his-
tograms. Random Numbers can be used to simu-
late Lotto draws. Lots of data can be generated
and stored in lists on the calculator for subsequent
analysis. You can even change the probability of an
event occurring.

Highly recommended.

PTO

16download from education.ti.com
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18.2 Discrete probability distributions

18.2.1 Counting methods

The relevant commands here are all in the
math PROB menu.

To evaluate 6! 6 math PROB 4

To evaluate 10P2 10 math PROB 2 2

To evaluate 10C2 10 math PROB 3 2

Both the CLASSIC and MATHPRINT versions
are shown here. In MATHPRINT, select the
commands before inserting any numbers; how-
ever, note what happens here if you do this
with the factorial command !.

18.2.2 Random numbers

A random number between 0 and 1 is generated by the rand command in the math PROB

menu; an integer in brackets after the rand command generates a list of that many random
numbers. You can store this list to listname using sto listname either with the rand command
or after the list of random numbers has been generated.

Random integers are generated by the randInt command: to generate three random integers
between 1 and 17, use the command randInt(1, 17, 3). If you leave off the 3, you get a single
random integer.

With STAT WIZARDS on, you get a menu for the input. Enter the respective numbers, then
move the cursor to paste the command to the Home screen and press enter to execute it.

Note the commands in the math PROB menu (top of the page) generating random numbers
that are normally or binomially distributed. The last command in the menu generates random
integers with no repeats, useful, for example, if you are simulating a raffle draw.

Exercises Solutions are in Section 18.6

1. Evaluate each of the following by hand, then check with your calculator.

(a) 6! (a) 6P4 (a) 8C5.

2. Find: (a) 13! (b) 15P9 (c) 35C22.

3. Generate 100 random integers between 1 and 6, simulating throwing a die. Store them
in an appropriately named list.17 Find: (a) the mean; (b) the standard deviation of
the mean; (c) the median. Comment on your answers.

17see Probability and Statistics 1 in Volume 1

35



18.2 Discrete probability distributions 18 PROBABILITY AND STATISTICS 2

18.2.3 Expected value and variance

Theory

The probability distribution function (pdf) of a discrete random variable X is

p(x) = P (X=x),

for each possible value of x; P stands for (the) probability (that).18

The cumulative distribution function (cdf) is

F (x) = P (X6x).

The mean (µ or µX) or expected value
(
E[X]

)
of a discrete random variable X is

µ = µX = E[X] =
∑
allx

xp(x).

The variance of a discrete random variable X with mean µ is

V [X] =
∑
allx

(x−µ)2p(x) =
∑
allx

x2p(x)− µ2.

The standard deviation of a random variable is the square root of the variance.

List operations

To calculate the expected value and variance of a discrete distribution, we must first enter
the distribution values into lists.

Example: Consider the following distribution of a discrete random variable X.

x 0 1 2 3 4

p(x) = P (X=x) 0.2 0.3 0.1 0.3 0.1

Put the two sets of numbers in lists X and PX
(see Probability and Statistics 1 in Volume 1
of this book).

Then, the cdf P (X62) is given by p(0) + p(1) + p(2) = 0.2 + 0.3 + 0.1 = 0.6.

On the calculator: sum
(

LPX, 1, 3
)
.

The calculator command sum is in the list

MATH menu. The 1 and 3 indicate the first
and third terms of LPX.

18Pr in JB
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Mean or expected value: On the calculator, the product LX LPX is a new list in which
each element is the product of the corresponding elements of the individual lists, i.e. a list
containing the values xp(x).

If we now sum this list, sum
(

LX LPX
)
, we obtain the mean value µ or the expected value

E[X] of x, 1.8 in this case (figure below).

Variance: Similarly, the variance V [X] is sum
(

LX2
LPX

)
− sum

(
LX LPX

)
2, 1.76 here.

Standard deviation: The standard deviation, the square root of the variance, is 1.33 here.

18.2.4 The Binomial Distribution

1. Calculating binomial probabilities

If a discrete random variable X has a binomial distribution, X ∼ bin(n, p), the probability
distribution function (pdf) is given by

P (X=x) = nCx p
x (1−p)n−x, x = 0, 1, 2, . . . , n.

The Binomial Distribution is defined by two parameters, the number of independent trials n
and the probability p of success at one trial.

If X∼bin(n, p), the calculator command to calculate P (X=x) is binompdf (n, p, x).

Example: If X∼bin(20, 0.6), calculate P (X=8).

Press distr
(

2nd vars
)

and scroll down to binompdf.

Press enter to generate an input menu.

Put in the three arguments, move the cursor to Paste,
press enter to paste the command to the Home screen

and enter again to execute it.

The binomial cumulative distribution function (cdf), denoted F (x), is F (x)=P (X6x).

To calculate P (X6x), we use the binomial cdf command binomcdf (n, p, x) (DISTR menu).

Example: If X∼bin(20, 0.6), find P (X611).

Example: If X∼bin(20, 0.6), find P (X>11):

P (X>11) = 1− P (X610).
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Example: If X∼bin(20, 0.6), find P (26X614):

P (26X614) = P (X614)− P (X61).

Exercises

1. If X∼bin(8, 0.4), find

(a) P (X=4)

(b) P (X61)

(c) P (X>7)

(d) P (16X63)

(e) P (X<6) = P (X65)

2. If X∼bin(25, 0.2), find

(a) P (X=4)

(b) P (X610)

(c) P (X>7)

(d) P (56X68)

(e) P (X>4) = 1−P (X64)

Solutions are in Section 18.6.

2. Graphing a Binomial Distribution

Example: If X∼bin(20, 0.6), graph the distribution of X for 06X620.

To do this, we need to store values of x in the X list and the corresponding values of P (X=x)
in the PX list, as we did in Section 18.2.3.

A quick way to fill the X list is to move the cursor to the list name, press enter and type in

the command seq (X, X, 0, 20) (below left); seq is in the list OPS menu.

Press enter again to fill the list (below right).

Similarly, move the cursor to the header of the PX list, press enter and insert the binomcdf

command as shown below left. LX comes from the list NAMES menu.

Press enter again to fill the list (below right).
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Set up the stat plot as shown below left and press zoom 9 (ZoomStat) to plot the graph

(below right). Adjust Xscl and Yscl if necessary and press graph to regraph. trace has been
pressed here and the cursor moved to X = 12.

Exercises

1. If X∼bin(10, 0.4), display the distribution of X graphically.

2. On the one graph, plot the distribution of: 19

X1∼bin(10, 0.1) use Plot1 with a square marker;

X2∼bin(10, 0.5) use Plot2 with a + marker;

X3∼bin(10, 0.9) use Plot3 with a dot marker.

Comment on how changing the value of p changes the shape of the distribution.

Solutions are in Section 18.6.

18.2.5 The Geometric Distribution

1. Calculating geometric probabilities

If a discrete random variable X has a Geometric Distribution, X ∼ geom(p), the probability
distribution function (pdf)

P (X=x) = p (1−p)x−1 for x = 1, 2, . . . .

The Geometric Distribution is defined by a single parameter p.

If X∼geom(p), the calculator command to calculate P (X=x) is geometpdf(p, x).

Example: If X∼geom(0.5), calculate P (X=4).

Press distr
(

2nd vars
)

and go to geometpdf.

Press enter to generate an input menu.a

Put in the two arguments, move the cursor to Paste,
press enter to paste the command to the Home

screen and enter again to execute it.

aSTAT WIZARDS on

19You might try line graphs, set in stat plot , rather than scatterplots to show the three distributions better.
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To calculate P (X6x), we use the geometric cdf command geometcdf (p, x).

Example: If X∼geom(0.5), calculate P (X66).

Example: If X∼geom(0.5), calculate P (X>3):

P (X>3) = 1− P (X62).

Example: If X∼geom(0.5), find P (26X65):

P (26X65) = P (X65)− P (X61).

Exercises

If X∼geom(0.2), find

(a) P (X=5) (b) P (X68) (c) P (X>7) (d) P (36X69).

Solutions are in Section 18.6.

2. Graphing a Geometric Distribution

Example: If X∼geom(0.2), graph the distribution of X for x = 1, 2, . . . , 10.

To do this, we need to store values of x in the X list and the corresponding values of P (X=x)
in the PX list, as we did in Section 18.2.4.

Here, to fill the X list, execute the command seq (X, X, 1, 10).

Move the cursor to the header of the PX list, press enter and insert the geometpdf command
as shown. Press enter again to fill the list.

Set up the stat plot as shown above right and press zoom ZoomStat to plot the graph below.

trace has been pressed and the cursor moved to X = 4.
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Exercises

1. If X∼geom(0.4), display the distribution of X graphically for 16x68.

2. On the one graph, plot the distribution of:

X1∼geom(0.1) use Plot1 with a square marker;

X2∼geom(0.5) use Plot2 with a + marker;

Comment on how changing the value of p changes the shape of the distribution.

Solutions are in Section 18.6.

18.2.6 The Hypergeometric Distribution

1. Calculating hypergeometric probabilities

If a discrete random variable X has a Hypergeometric Distribution, X ∼ hypg(N, k, n), the
probability distribution function (pdf)

P (X=x) =
kCx

N−kCn−x
NCn

with 06x6n and x6k (see Section 18.2.1).

The Hypergeometric Distribution is defined by three parameters, the population size N , the
number of successes in the population k and the sample size n.

There is no command for the pdf or cdf of the Hypergeometric Distribution but the calcula-
tions can be done both numerically and graphically by putting the pdf in Y1.

M has been used for n.

Example: If X∼hypg(50, 10, 8), calculate P (X=2).

Store values of N , k and M in the relevant memories, then evaluate Y1(2).

To calculate the cdf, P (X6x), we have to add up the probabilities from 0 up to and including
x.

Example: If X∼hypg(50, 10, 8), calculate P (X61).

P (X61) = P (X=0) + P (X=1).

Following on from the previous example, calculate Y1(0) + Y1(1).
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Example: If X∼hypg(50, 10, 8), calculate P (X>2).

P (X>2) = 1− P (X61) = 1− 0.4905 = 0.509 from the previous example.

Exercises

If X∼hypg(100, 15, 5), find

(a) P (X=3) (b) P (X63) (c) P (X>3) (d) P (16X62).

Solutions are in Section 18.6.

2. Graphing a Hypergeometric Distribution

Example: If X∼hypg(50, 10, 8), graph the distribution of X for x = 0, 2, . . . , 8.

To do this, we need to store values of x in the X list and the corresponding values of P (X=x)
in the PX list, as we did in Section 18.2.4.

Here, to fill the X list, execute the command seq (X, X, 0, 8).

Store values of N , k (K) and n (M) in the relevant memories. Move the cursor to the header

of the PX list, press enter and insert the command as shown below left.

Press enter again to fill the list.

Set up the stat plot as shown above right and press zoom ZoomStat to plot the graph. trace

has been pressed in the figure below and the cursor moved to X = 4.

Exercises

1. If X∼hypg(100, 15, 8), display the distribution of X graphically for 06x68.

2. On the one graph, plot the distribution of:

X∼hypg(100, 15, 8) use Plot1 with a square marker;

X∼hypg(100, 30, 8) use Plot2 with a + marker;

Comment on how changing the value of k changes the shape of the distribution.

Solutions are in Section 18.6.
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18.2.7 The Poisson Distribution

1. Calculating Poisson probabilities

If a discrete random variable X has a Poisson Distribution, X ∼ pois(µ), the probability
distribution function (pdf)

P (X=x) =
µx

x!
e−µ for x = 0, 1, 2, . . . .

The Poisson Distribution is defined by a single parameter µ.

If X∼pois(µ), the calculator command to calculate P (X=x) is poissonpdf (µ, x).

Example: If X∼pois(3), calculate P (X=5).

Press distr
(

2nd vars
)
, scroll down to poissonpdf

and press enter to generate an input menu.

Put in the two arguments, move the cursor to Paste,
press enter to paste the command to the Home

screen and enter again to execute it.

To calculate P (X6x), we use the Poisson cdf command poissoncdf (µ, x).

Example: If X∼pois(3), calculate P (X66).

Example: If X∼pois(3), calculate P (X>2):

P (X>2) = 1− P (X61).

Example: If X∼pois(3), calculate P (36X69):

P (36X69) = P (X69)− P (X62).

Exercises

If X∼pois(0.5), find

(a) P (X=0)

(b) P (X63)

(c) P (X>1)

(d) P (16X64).

Solutions are in Section 18.6.

43



18.2 Discrete probability distributions 18 PROBABILITY AND STATISTICS 2

2. Graphing a Poisson Distribution

Example: If X∼pois(4), graph the distribution of
X for x = 0, 1, . . . , 10.

To do this, we need to store values of x in the X list
and the corresponding values of P (X = x) in the
PX list (Section 18.2.4).

Here, to fill the X list, execute the command
seq (X, X, 0, 10).

Move the cursor to the header of the PX list,
press enter and insert the poissonpdf command as
shown. Press enter again to fill the list.

Set up the stat plot as shown and press zoom 9 (ZoomStat) to plot the graph. trace has

been pressed in the figure and the cursor moved to X = 4.

Exercises

1. If X∼pois(1.5), display the distribution of X graphically for 06x66.

2. On the one graph, for 06x610, plot the distribution of:

X1∼pois(2) use Plot1 with a square marker;

X2∼pois(5) use Plot2 with a + marker;

X2∼pois(9) use Plot2 with a dot marker.

Comment on how changing the value of λ changes the shape of the distribution.

Solutions are in Section 18.6.

18.2.8 Discrete-distribution spinner

A spinner,20 here a program SPDISPDS/SPDSCDCE,21 allows you to vary the parameters on
screen of each of the four types of discrete probability distributions (pdf and cdf) here, by
pressing a key, and see the distribution replotted immediately. The program contains the
necessary information (in HELP) on how to vary the parameters.

20From a feature in an earlier version of Excel used by Ed Staples and Margie Smith in SpinnaMaths to
explore the effects of varying parameters in a variety of applications; sadly, SpinnaMaths is no longer available
because of subsequent ‘upgrades’ to Excel.

21available at canberramaths.org.au under Resources
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18.3 Continuous probability distributions

For continuous random variables, we do not specify the probability for every value in the
range. In fact, P (X = a) = 0 for any value of a but we can work out the probability that
X lies in a range of values. For example, the probability of finding a person whose height is
exactly 2 metres is zero, but the probability of finding someone with a height between 2 and
2.01 metres might be 0.05.

For a continous random variable X, we define a probability density function (pdf) f(x).

The continuous analogue of a summation is an integral, so the cumulative distribution function
(cdf), F (x)=P (X6x) is naturally defined as

F (x) =

∫ x

−∞
f(u) du.

The probability that X lies in an interval is then the area under the (positive) pdf curve over
that interval.

18.3.1 The Normal Distribution

A continuous random variable X with a Normal Distribution has an exponential pdf

f(z) =
1

σ
√

2π
exp

(
1

2

(
z−µ
σ

)2
)

−∞ < z <∞.

The Normal Distribution is defined by two parameters, the mean µ and variance σ2;
we write X∼N(µ, σ2).

1. Calculations with the Normal Distribution

The basic (cdf) calculation is

P (a6X6b) =

∫ b

a

f(z) dz.

This is achieved by the calculator command (with appropriate numbers inserted)

normalcdf (a, b, µ, σ).

The normalcdf command is found in the distr menu.

If µ and σ are omitted, the standard values µ= 0 and σ= 1 are assumed. It’s best to always
put them in.

You can also use commands in the distr DRAW menu to show geometrically the calculation
you have done. Both are shown below.

If the lower limit a is −∞, set a = −E99 = −1×1099, the smallest number on the calculator.22

Similarly, if the upper limit b is∞, set b = E99 = 1×1099, the largest number on the calculator.

Always think geometrically here: What area under the normal-distribution curve (pdf) am I
calculating? The graphical representation below should help. You need to do a certain number
of examples by hand first to understand this.

22The symbol E is EE (on the comma key).
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Example: Find P (Z60.7) = P (−∞<Z60.7),

where Z∼N(0, 1), the Standard Normal Distribution (STAT WIZARDS on).

Example: Find P (1686X6196), where X∼N(180, 82).

Normally you would rewrite this problem in terms of the standard Normal Distribution, then
use tables to find the answer. However, because we can specify the mean and standard
deviation in the relevant calculator command, we can do this calculation in one go.

Learn how to do both.

Example: Find P (X>13.5), where X∼N(10, 22).

Two ways to do this.

(a) P (X>13.5) = P (13.56X<∞) (top line below).

(b) P (X>13.5) = 1− P (X613.5) (second line above).

Example: An inverse-normal problem

Find c such that P (Z6c) = 0.975, where Z∼N(0, 1)

Here we could generate a table of normal-distribution cdf values using table on the calculator
and search for the appropriate value (figures below). This requires some experimentation with

the values in tblset
(

2nd window
)

.
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However, there is an easier way. The command invNorm(M,µ, σ) (in the distr menu) finds
c such that P (Z6c)=M , the inverse of the normal-distribution function.

There are actually three options: the one above, find c such that P (Z6c)=M (LEFT); find
c such that P (−c6Z6c)=M (CENTER); and find c such that P (c6Z)=M (RIGHT).

Selecting invNorm from the distr menu gives an input menu (below left). Entering area
M = 0.975, selecting LEFT, CENTER and RIGHT successively and executing the commands
gives the screen below right.

Another way to find c such that P (Z6c)=M is to solve the equation (in calculator terms)

normalcdf(−E99, X, 0, 1)− 0.975 = 0

for X. This can be done using the Solver (last item in the math menu) but this requires a

reasonable guess, especially if there is more than one solution (there isn’t here).

Much better is to solve the equation by graphing

the left-hand side and using zero in the calc menu,
as in the figure.

Exercises

1. If Z∼N(0, 1), find

(a) P (−1.56Z62)

(b) P (Z6−0.8)

(c) P (Z>1.6)

(d) P (−16Z61).

2. If X∼N(100, 20), find

(a) P (886X6112)

(b) P (1006X6105)

(c) P (X6107)

(d) P (X>97).

3. If Z∼N(0, 1), find the value of z to 2 decimal places if

(a) P (Z6z)=0.8413

(b) P (Z6z)=0.95

(c) P (Z>z)=0.9772

(d) P (|Z|60.95).

You’ll need to think geometrically here.

4. If X∼N(10, 4), find the value of x to 1 decimal place if

(a) P (X6x)=0.05

(b) P (X>x)=0.90
(c) P (X>x)=0.025

Here too.

Solutions are in Section 18.6.
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2. Graphical representation

Example: Graph P (Z60.7) = P (−∞<Z60.7), where Z∼N(0, 1).

ShadeNorm is in the distr DRAW menu. BLACK (CE only) is in the vars COLOR menu.

If you omit it, the shading comes out blue, the default.

Exercises

If X∼N(60, 25), display each of the following probabilities as an area under the normal pdf
curve: (a) P (546X658); (b) P (X670); (c) P (X>62.5)

Solutions are in Section 18.6.

3. Using the Normal Distribution to approximate a Binomial Distribution

When n is large, the Binomial Distribution bin(n, p) can be approximated by the Normal
Distribution N

(
np, np(1−p)

)
. This can be seen by plotting the two distributions on the one

graph.

Example: Compare bin(5, 0.3) with N(1.5, 1.05).

Construct a scatterplot of bin(5, 0.3)
(Section 18.2.4).

Put N(1.5, 1.05) into Y1 as shown in the figure.

Note that σ=
√

1.05.

48



18.3 Continuous probability distributions 18 PROBABILITY AND STATISTICS 2

Press graph to display both graphs. A reason-

able but not good approximation with n=5.

Example: Compare bin(25, 0.3) with N(7.5, 5.25).

Construct a scatterplot of bin(25, 0.3)
(Section 18.2.4).

Put N(7.5, 5.25) into Y1 as shown in the figure.

Note that σ=
√

5.25.

Press graph to display both graphs.

A much better approximation with n=25.

Exercise

Graphically compare the normal approximation to the binomial for p= 0.5 when n= 5 and
n=20.

Solutions are in Section 18.6.
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18.3.2 The Exponential Distribution

A continuous random variable X with an Exponential Distribution has pdf

p(x) = λe−λx 0 < x <∞.

The Exponential Distribution is defined by one parameter, λ. We write X∼Exp(λ).

The cdf P (a6X6b) is given by

P (a6X6b) =

∫ b

a

λe−λx dx = e−λa − e−λb.

Example: If X∼Exp(0.5), find P (16X64).

P (16X64) = e−0.5×1 − e−0.5×4 = e−0.5 − e−2 = 0.471 to 3 significant digits.

To obtain a visual representation of this calculation, use
∫

f(x)dx in the calc menu.

First set a suitable window and graph Y1. Then, select the command and specify the inte-
gration limits. This shades the area between the function Y = 0 and Y1 for X between 1 and
4; it also gives you the integral.

Exercises

If X∼Exp(0.2), find to 4 decimal places

(a) P (36X65) (b) P (X65) (c) P (X>2)

Solutions are in Section 18.6.

Continuous-distribution spinner

A spinner,23 here a program SPCTSPDS/SPCTSDCE,24 allows you to vary the parameters on
screen of each of the two types of continuous probability distributions (both their pdf and cdf)
here (more may be added), by pressing a key, and see the distribution replotted immediately.

The program contains the necessary information (in HELP) on how to vary the parameters.

23From a feature in an earlier version of Excel used by Ed Staples and Margie Smith in SpinnaMaths to
explore the effects of varying parameters in a variety of applications; sadly, SpinnaMaths is no longer available
because of subsequent ‘upgrades’ of Excel.

24available at canberramaths.org.au under Resources
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18.4 Statistical inference

18.4.1 Hypothesis testing and confidence intervals for means

1. Single-sample mean drawn from a normal population: σ known

Testing the significance of the difference of a sample mean from a hypothesised population
mean: Z test

Example: (JB) A sample of 25 workers in a factory spent, on average, 2.2 minutes to
assemble the co-processor of a personal computer. Assuming that the assembly times are
normally distributed with a standard deviation σ = 0.4 seconds, can we conclude that the
average assembly time exceeds 2 minutes? Test at the 5% level of significance.

Steps

H0: µ=2.

H1: µ>2.

Significance level: 5%.

Test statistic: Z =
x̄−µ
σ/
√
n

.

Given: µ=2; σ=0.4; x̄=2.2; and n=25.

Then: z=2.5 the observed value of Z, from the calculator (see below); and

p = P (Z>2.5) = 0.0062 from the calculator.

As p<0.05, reject H0 and conclude that, on average, assembly times exceed 2 minutes.

Calculator operations

Go to the stat TESTS menu and select Z-Test (below left). Press enter .

Complete the menu items as shown (above right): Stats because we are given the sample
mean rather than the raw data; >µ0 because H1: µ > 2. Put the cursor on Calculate and
press enter to obtain the screen below left.

If you select Draw instead of Calculate, the result appears graphically (below right): shading
at the right-hand end of the curve.
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Estimate the population mean from the sample mean

Use a 95% confidence interval to form an interval estimate for the population mean µ.

Steps

Given: σ=0.4; x̄=2.2; n=25; and C(onfidence)-Level 0.95.

From the calculator (see below), we are 95% confident that the interval 2.04 < µ < 2.36
captures the population mean.

Calculator operations

Go to the stat TESTS menu and select ZInterval (below left). Press enter .

Complete the menu items as shown (above centre) if necessary.

Put the cursor on Calculate and press enter to obtain the screen above right giving the
confidence interval.
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2. Single-sample mean drawn from a normal population: σ unknown

Testing the significance of the difference of a sample mean from a hypothesised population
mean: T test

Example: (JB) A study was conducted to see whether the ascorbic-acid (Vitamin C) content
(mg/100g) of a certain brand of frozen vegetables was less than the recommended level of
18.6 mg/100g. Eight packets of frozen vegetables were randomly selected from the production
line and were found to have the following ascorbic-acid levels:

14.3 19.1 16.3 19.2 15.8 16.2 18.7 14.7.

Assuming that assembly times are normally distributed, can we conclude that the average
ascorbic-acid level of this brand of vegetables is less than 18.6 mg/100g?

Steps

H0: µ=18.6.

H1: µ<18.6.

Significance level: 5%.

Test statistic: T =
x̄−µ
s/
√
n

, with n−1 degrees of freedom.

Then, from the calculator (see below), x̄=16.79; s=1.961; and n=8, giving

t=−2.614, the observed value of T with df = n−1 = 7, and

p = P (T 62.614) = 0.017.

As p<0.05, reject H0 and conclude that the mean ascorbic-acid level of this brand of vegetables
is less than 18.6 mg/100g.

Calculator operations

Enter the data into a list called ACID (below left).

Go to the stat TESTS menu and select T-Test (above right). Press enter .

Complete the menu items (below left): Data because we are given the raw data; <µ0 because
H1: µ<2. Put the cursor on Calculate and press enter to obtain the screen below center. If
you select Draw instead of Calculate, the result appears graphically (below right).
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Estimate the population mean from the sample mean

Example: Use a 95% confidence interval to form an interval estimate for the mean ascorbic-
acid level µ of the brand of vegetables.

Steps

Given: C(onfidence)-Level 0.95.

From the calculator (see below), we are 95% confident that the interval 15.1 < µ < 18.4
captures the population mean.

Calculator operations

Go to the stat TESTS menu and select TInterval (below left). Press enter .

Complete the menu items as shown (above centre) if necessary.

Put the cursor on Calculate and press enter to obtain the screen above right giving the
confidence interval.

18.4.2 Hypothesis testing and confidence intervals for population proportion

Single-sample proportion

1. Significance test using the binomial distribution (exact test)

Example: (JB) An electronic-component manufacturer claims that fewer than 10% of com-
ponents have manufacturing faults. A random sample of 15 components contains 4 faulty
ones. Does this challenge the manufacturer’s claim? Test at the 5% level of significance.

Steps

H0: π=0.10.

H1: π>0.10.

Significance level: 5%.

Let X be the number of faulty components.

Then, under the null hypothesis, X∼bin(15, 0.10).

Then, from the calculator (see below), p = P (X>4) = 1−P (X63) = 0.056.

As p> 0.05, do not reject H0. There is not sufficient evidence that the percentage of faulty
components exceeds 10%.

Calculator operation:
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2. Significance test using the normal approximation to the binomial distribution:
Z test with no continuity correction

For n large, nπ>10 and n(1−π)>10, the binomial distribution bin(n, π) can be approximated
by a normal distribution with µ=nπ and σ2 =nπ(1−π) (Section 18.3.1).

Example: (JB) An electronic-component manufacturer claims that fewer than 10% of com-
ponents have manufacturing faults. A random sample of 120 components contains 23 faulty
ones. Does this challenge the manufacturer’s claim? Test at the 5% level of significance.

Steps

H0: π=0.10.

H1: π>0.10.

Significance level: 5%.

Given: x=23; n=120.

Test statistic: Z =
x− nπ

s
√
nπ(1−π)

.

Then, from the calculator (see below), the observed value of Z, z=3.347, and

p = P (Z>3.347) = 0.0004 to 4 decimal places.

As p<0.05, reject H0, and conclude that the percentage of faulty components exceeds 10%.

Calculator operations

Go to the stat TESTS menu and select 1-PropZTest (below left). Press enter .

Fill in the resulting screen (below centre), put the cursor on Calculate and press enter to
obtain the screen below right.
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3. Significance test using the normal approximation to the binomial distribution:
Z test with continuity correction

For n large, nπ > 10 and n(1−π)> 10, the binomial distribution can be approximated by a
normal distribution with µ=nπ and σ2 =nπ(1−π) (Section 18.3.1). The approximation can
be improved by using the continuity correction.

Example: (JB) An electronic-component manufacturer claims that fewer than 10% of com-
ponents have manufacturing faults. A random sample of 120 components contains 23 faulty
ones. Does this challenge the manufacturer’s claim? Test at the 5% level of significance.

Steps

H0: π=0.10.

H1: π>0.10.

Significance level: 5%.

Given: x=23; n=120.

Test statistic: Z =
x− nπ√
nπ(1−π)

.

Given x=22.5 (taking into account the continuity correction), π=0.10 and n=120, we
find from the calculator (see below) that the observed value of Z,

z =
22.5− 120×0.1√
120×0.1(1−0.1)

= 3.195, and

p = P (Z>3.195) = 1− P (Z63.195) = 0.0007 to 4 decimal places.

As p<0.05, reject H0, and conclude that the percentage of faulty components exceeds 10%.

Calculator operations
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4. Estimating the population proportion from a sample proportion: Normal approximation

Example: (JB) An electronic-component manufacturer claims that fewer than 10% of com-
ponents have manufacturing faults. A random sample of 120 components contains 23 faulty
ones. Use a 95% confidence interval to form an interval estimate for the true proportion of
components that have manufacturing faults.

Steps

Given: C(onfidence)-Level 0.95.

From the calculator (see below), we are 95% confident that the interval 0.12 < π < 0.26
captures the true population proportion.

Calculator operations

Go to the stat TESTS menu and select 1-PropZInt (below left). Press enter .

Complete the menu items as shown (above centre) if necessary.

Put the cursor on Calculate and press enter to obtain the screen above right giving the
confidence interval.
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18.5 Probability and gambling schemes

These are programs I wrote for a first-year university course on Probability taught against a
background of the probabilities involved in various modes of gambling.25 The programs are
available at canberramaths.org.au under Resources.

18.5.1 Throwing dice

Throwing dice is at the heart of many games and methods of gambling. The DICE/DICECE

program simulates rolling any number of six-sided dice.

You can also do this in the ProbSim app, and store the accumulated data for later analysis.

18.5.2 Random walks

In the WALK/WALKCE program, two players, A and B, start with a specified bank each.
You then specify the probability that A wins at each go. If A wins a go, they take $1 from
B’s bank and add it to theirs; if A loses, B receives $1 from A.

The program then runs until either A or B has no money left.

With graphics, the amount that each player has at each go is plotted so you can see how the
game is progressing (and cheer on your favourite).

For a faster simulation, run the program without the graphics.

25Students were not required to demonstrate their understanding of the course by making money at their
chosen form of gambling. In fact, it soon became obvious during the course that gambling is not a way to
make money; it’s an often costly entertainment.
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18.5.3 Basic betting

In the WINBET/WINBETCE program, you specify the amount won for a $1 bet, the proba-
bility of winning and the number of trials. The program then simulates the trials, tells you
how much you won (+) or lost (−), and shows the mean win per trial x and the variance σ2

x.

18.5.4 Gambling systems

The GAMBLSYS/GBLSYSCE program simulates five different gambling systems.

Two runs of each system are shown below.

(a) bet the same amount each time.

(b) Martingale: double your bet after a win; keep the same bet after a loss.

59



18.5 Probability and gambling schemes 18 PROBABILITY AND STATISTICS 2

(c) Reverse Martingale: double your bet after a loss; keep the same bet after a win.

(d) Labouchère (sequence 1,2,3,4)

The user of this strategy decides before playing how much money they want to win each
bet. He or she then writes down a list or sequence of positive numbers that sum to this
amount. With each bet, the player stakes an amount equal to the sum of the first and
last numbers on the list (if only one number remains, that number is the amount of the
stake).

If the bet is successful, the two amounts are removed from the list. If the bet is unsuc-
cessful, the amount lost is appended to the end of the list. This process continues until
either the list is completely crossed out, at which point the desired amount of money
has been won, or until the player runs out of money to wager.

(e) Reverse Labouchère (sequence 1,2,3,4)

In this version after a win, instead of deleting numbers from the list, the player adds
the previous bet amount to the end of the list. He or she continues building up the list
until they hit the table maximum. After a loss, the player deletes the outside numbers
and continues working on the shorter list. The player starts their list again if they run
out of numbers to bet.

The Reverse Labouchère system is often used because where the Labouchère list repre-
sents how much the player wants to win each bet, a reverse Labouchère line represents
the most that the player is able to lose.

The Martingale and Labouchère systems are dangerous in that they can produce a long string
of small wins which don’t prepare you for the massive loss which is around the corner.
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18.5.5 Tossing coins

Many people misunderstand the Law of Averages.

A sales book said something along the lines of “If 1 in 2 people are interested in buying your
product then, if you get a knockback at one house, the law of averages says you will get a
sale at the very next house.” It makes you wonder whether this guy had ever tried it himself.

It’s like saying that if red came up on the roulette wheel last time, black must come up next.
If that were the case, you could correctly predict the next umpteen trillion spins of the wheel
and retire tomorrow.

The Law of Averages (or the Law of Large Numbers) actually states that, if the probability
of an event is p, then after n trials, the number of times this event occurs, x say, is such that

x

n
→ p as n→∞.

The Law of Averages does not say that one event or a series of events causes another event
to occur next in order to ‘even things out’. In fact the opposite is true; the Law of Averages
depends for its validity on each event being independent — that is, unaffected by earlier
events.

The COINTOSS/CNTOSSCE program simulates tossing a coin (fair or biased). Enter the
probability of heads and the number of trials (up to 999). The program plots the ratio H/N
versus N, where H is the total number of heads in N tosses. The program also displays the
value of N beyond which H/N remains within 10% of the probability of heads.

Values of H/N are stored in list L1; you should clear this when you have finished.

The program tells us that the ratio remained within 10% of 0.6 after 52 trials.
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18.6 Solutions to exercises

Exercises page 35

1. Evaluate each of the following by hand, then check with your calculator.

(a) 6!=720 (b) 6P4 =360 (c) 8C5 =56.

2. (a) 13!=6, 227, 020, 800 (b) 15P9 =1, 816, 214, 400 (c) 35C22 =1, 476, 337, 800.

3. Generate 100 random integers between 1 and 6, simulating throwing a die. Store them
in an appropriately named list.

From 1-Var Stats, (a) the mean is 3.38; (b) the standard deviation is 1.67; and (c) the
median is 4. Answers will vary here.

Exercises page 226

1. If X∼bin(8, 0.4), to 4 decimal places,

(a) P (X=4)=0.2322

(b) P (X61)=0.1064

(c) P (X>7)=0.0085

(d) P (16X63)=0.5773

(e) P (X<6) = P (X65)=0.9502.

2. If X∼bin(25, 0.2), to 4 decimal places,

(a) P (X=4)=0.1867

(b) P (X610)=0.9944

(c) P (X>7)=0.2200

(d) P (56X68)=0.5326

(e) P (X>4) = 1−P (X64)=0.5793.

Exercises page 226

1. If X∼bin(10, 0.4), display the distribution of X graphically.

window [0, 10, 1]×[0, 0.3, 0.1]
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2. On the one graph, plot the distribution of:

X1∼bin(10, 0.1) use Plot1 with a square marker;

X2∼bin(10, 0.5) use Plot2 with a + marker;

X3∼bin(10, 0.9) use Plot3 with a dot marker.

Here, I’ve done line graphs rather than scatterplots to show the 3 distributions better.

window [0, 10, 1]×[0, 0.5, 0.1]

Comment on how changing the value of p changes the shape of the distribution.

As p increases, the peak of the distribution moves to the right.

Exercises page 40

If X∼geom(0.2), to 4 decimal places,

(a) P (X=5)=0.0819

(b) P (X68)=0.8322

(c) P (X>7)=0.2621

(d) P (36X69)=0.5058.

Exercises page 41

1. If X∼geom(0.4), display the distribution of X graphically for 16x68.

window [0, 9, 1]×[0, 0.5, 0.1]
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2. On the one graph, plot the distribution of:

X1∼geom(0.1) use Plot1 with a square marker;

X2∼geom(0.5) use Plot2 with a + marker;

Here, I’ve done line graphs rather than scatterplots to show the two distributions better.

window [0, 9, 1]×[0, 0.5, 0.1]

Comment on how changing the value of p changes the shape of the distribution.

As p increases, the distribution has a larger initial value but decays more rapidly.

Exercises page 42

If X∼hypg(100, 15, 5),

(a) P (X=3)=0.0216

(b) P (X63)=0.9984

(c) P (X>3)=0.0016

(d) P (16X62)=0.5411.

Exercises page 42

1. If X∼hypg(100, 15, 8), display the distribution of X graphically for 06x68.

window [0, 9, 1]×[0, 0.5, 0.1]
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2. On the one graph, plot the distribution of:

X∼hypg(100, 15, 8) use Plot1 with a square marker;

X∼hypg(100, 30, 8) use Plot2 with a + marker;

Here, I’ve done line graphs rather than scatterplots to show the two distributions better.

window [0, 9, 1]×[0, 0.5, 0.1]

Comment on how changing the value of k changes the shape of the distribution.

As k increases, the distribution has a smaller initial value, and a smaller peak, shifted
to the right.

Exercises page 188

If X∼pois(0.5), to 4 decimal places,

(a) P (X=0)=0.6065

(b) P (X63)=0.9982

(c) P (X>1)=0.3935

(d) P (16X64)=0.3933.

Exercises page 44

1. If X∼pois(1.5), display the distribution of X graphically for 06x66.

window [0, 6.2, 1]×[0, 0.4, 0.1]
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2. On the one graph, for 06x610, plot the distribution of:

X1∼pois(2) use Plot1 with a square marker;

X2∼pois(5) use Plot2 with a + marker;

X2∼pois(9) use Plot2 with a dot marker.

Here, I’ve done line graphs rather than scatterplots to show the 3 distributions better.

window [0, 6.2, 1]×[0, 0.4, 0.1]

Comment on how changing the value of λ changes the shape of the distribution.

The the peak moves to the right and decreases in amplitude.

Exercises page 47

1. If Z∼N(0, 1), to 4 decimal places,

(a) P (−1.56Z62)=0.9104

(b) P (Z6−0.8)=0.2119

(c) P (Z>1.6)=0.0548

(d) P (−16Z61)=0.6827.

2. If X∼N(100, 20), to 4 decimal places,

(a) P (886X6112)=0.9927

(b) P (1006X6105)=0.3682

(c) P (X6107)=0.9412

(d) P (X>97)=0.7488.

3. If Z∼N(0, 1), find the value of z to 2 decimal places if

(a) P (Z6z)=0.8413: x=1.00

(b) P (Z6z)=0.95: x=1.64

(c) P (Z>z)=0.9772: x=−2.00

(d) P (|Z|60.95): x=1.96.

4. If X∼N(10, 4), find the value of x to 1 decimal place if

(a) P (X6x)=0.05: x=6.7

(b) P (X>x)=0.90: x=7.4
(c) P (X>x)=0.025: x=13.9
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Exercises page 48

If X∼N(60, 25), display each of the following probabilities as an area under the normal pdf
curve.

(a) P (546X658) (b) P (X670) (c) P (X>62.5)

window [40, 80, 5]×[0, 0.1, 0.05]

Done using the ShadeNorm command.

Graphically compare the normal approximation to the binomial for p= 0.5 when n= 5 and
n=20.

n=5 n=20

window [0, 5.5, 1]×[0, 0.4, 0.1] window [0, 20.5, 5]×[0, 0.2, 0.1]

Exercises page 50

If X∼Exp(0.2), to 4 decimal places,

(a) P (36X65)=0.1809 (b) P (X65)=0.6321 (c) P (X>2)=0.6703
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19 Matrix and Vector Operations

The material here is directly relevant to the topics Vectors in the plane, Vectors in three
dimensions and Matrices in the Australian Curriculum for Specialist Mathematics.

Some of the material is taken from lecture notes on Linear Algebra written for first-year
students at UNSW Canberra by Colin Pask and extended for graphics calculators by Peter
McIntyre.

As with all technology, you should do the first few calculations by hand to make sure you
understand the method. Use the technology firstly to check your hand calculations and then
when the numbers make hand calculation difficult or prone to error.

19.1 Note on matrix and vector notation

Many books use bold italic uppercase letters for matrices, e.g. M , and bold italic lowercase
letters for vectors, e.g. v. However, students can’t write these forms and, in the interest of
their distinguishing between scalars, vectors and matrices, we ask them to underline vectors
and double-underline matrices. Accordingly, we do that here too to encourage them to do it.

Of course, not many take notice, resulting in expressions such as M = 2. One can only try.

19.2 Basic matrix operations

The basic matrix operations on the calculator work just like the number operations with one
or two minor exceptions.

Let’s start out with matrices A
==

=

[
0 1
2 0

]
, B

==
=

[
1 2 3
4 5 6

]
and C

==
=

[
−1 2

3 −4

]
.

19.2.1 Putting matrices in your calculator

Press matrix , then I I
(
or J

)
to get to EDIT (figure below left). You are now ready

to edit one of the ten matrices [A] – [J]: press 1 to select [A].

Now input the order (rows×columns) and the elements of [A] — the cursor indicates what is

required. Press the desired number and enter . The cursor moves on and leads you through
the elements row by row.

Make sure you press enter after the last element (figure below right).

Press matrix J again, but press 2 this time to input [B]. Finally input [C].

Press 2nd quit to return to the Home screen.
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19.2.2 Displaying matrices

You call up matrices by pressing matrix and the appropriate number.

For example, pressing matrix 2 will display [B] on the screen.

Pressing enter will show you the elements of (numbers in) [B].

19.2.3 Adding and subtracting matrices

Matrices can only be added or subtracted if they have the same dimensions, that is the same
number of rows and the same number of columns.

We can add/subtract multiples of [A] and [C], but not with [B].

19.2.4 Multiplying matrices

Press matrix 1 matrix 2 to display [A][B] and press enter to display the numerical result

A
==
B
==

=

[
4 5 6
2 4 6

]
.

The result is stored in Ans (as is the result of any calculation).

If you now want to multiply by A
==

again, i.e. to find A
==

(
A
==
B
==

)
, press matrix 1 2nd ans

(
on

the (–) key
)

to display [A]Ans, then enter to give the numerical result

A
==

(
A
==
B
==

)
=

[
2 4 6
8 10 12

]
.

Note: If you want to evaluate the expression A
==

(
A
==
B
==

)
using brackets, you need to put in

the multiplication sign before the brackets, that is evaluate [A]∗
(
[A] [B]

)
. This is because a

bracket following a matrix, [A](1, 2) for example, is used to denote the element of a matrix,
here the 1, 2 element, i.e. the number in the first row and second column.

To evaluate A
==

(
A
==
B
==

)
, it is much simpler to omit the brackets and just evaluate [A] [A] [B],

thereby using one of the laws of vector multiplication.
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19.2.5 Squaring matrices

We could also work out A
==
A
==
B
==

as A
==

2B
==

.

Press matrix 1 x2 matrix 2 to display [A]2[B] and enter to give the same result:

A
==

2B
==

=

[
2 4 6
8 10 12

]
.

Integer powers of a matrix are produced the same way as with numbers (for positive integers).
Only square matrices can be raised to a power.

A
==

4 =

[
4 0
0 4

]
.

The only negative integer ‘power’ that works is −1
(
using the x−1 key

)
:

however, [A]−1 produces the inverse of (square) matrix A
==

.

The reciprocal of a matrix is not defined, nor is division of one matrix by another.

19.2.6 More-involved expressions

Extensions work just as you would expect. For example, to work out A
==
B
==

+ 3B
==

, press

matrix 1 matrix 2 + 3 matrix 2 to display ‘[A][B] + 3[B]’, and enter to give

A
==
B
==

+ 3B
==

=

[
7 11 15
14 19 24

]
.

Note: Again, if you want to evaluate an expression involving brackets, such as A
==

(
B
==

+C
==

)
,

you need to put in the multiplication sign before the brackets, that is evaluate A
==
∗
(
B
==

+C
==

)
.

19.2.7 Storing matrices

If you wanted to keep the previous answer for later use, you might store it in matrix [C] by

pressing STOI matrix 3 enter (figure above).

Notice that the calculator automatically gives [C] the correct order.
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19.2.8 Illegal operations

The calculator will not let you do invalid operations.

For example, if you try to calculate A
==

+B
==

by entering matrix 1 + matrix 2 , you will see

[A]+[B] on the screen, but pressing enter produces the message ERR: DIM MISMATCH.

Why?

19.2.9 Other matrix operations

A number of operations are contained in the matrix math menu.

� determinant : det([A]) =−2.

� transpose: [B]T =

 1 4
2 5
3 6

.

� dimension: dim([B]) = {2 3}: 2 rows × 3 columns.

� ‘filling’ a matrix : Fill
(
1, [A]

)
produces a matrix of 1s:

[
1 1
1 1

]
.

� identity matrix : identity(n) produces the n×n identity matrix.

� row-echelon form: ref
(
[A]
)

produces the row-echelon form of [A] (Gaussian elimination
— see Section 19.3).

� reduced-row-echelon form: rref
(
[A]
)

produces the reduced row-echelon form of [A] (Gauss-
Jordan elimination — see Section 19.3).

See the TI-84 Guidebook for details on the other matrix MATH menu items.

Some applications of matrices in population modelling can be found in Population Modelling
3: Matrix Models, Chapter 20.
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19.3 Systematic Gauss Elimination

19.3.1 The method

The endpoint of Gauss elimination or Gauss reduction in solving a system of simultaneous
equations is a matrix in row-echelon form, characterised by:

(a) the first non-zero element in each row is a 1 (called a pivot);

(b) all elements in the column below a pivot are 0.

To reduce a matrix to row-echelon form, we use elementary row operations.26 The three
elementary row operations are:

A. exchange two rows: Ri 
 Rj

B. multiply a row by a constant: Ri → cRi, c 6= 0

C. add a constant multiple of one row to another: Ri → Ri+cRj, c 6= 0.

Procedure

1. If the first column of the matrix is all zeros, ‘cross out’ this column to leave a smaller
matrix.

2. If the element in the first row and first column (top left element) of the matrix is 0,
exchange Row 1 with another row (Operation A).

(Sometimes it is convenient to do this even if the top left element is non-zero, so as to
avoid fractions in Step 3.)

3. Multiply the top row by a constant to make the first element 1 (Operation B).

4. Use Operation C to obtain 0s below the 1 (pivot) by adding multiples of Row 1 to
each successive row (Ri → Ri + cR1, i = 2, 3, . . . ).

5. ‘Cross out’ the first row and first column to leave a smaller matrix.

6. Go back and start at Step 1 on this smaller matrix.

PTO

26Each row operation corresponds to the multiplication of the matrix by a corresponding elementary matrix.
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Notes

� The only choice in this systematic version of Gauss elimination is which rows to inter-
change in Step 2. All the other operations are prescribed.

� The solutions to the simultaneous equations described by the row-echelon matrix are
the same as those of the original matrix, hence the usefulness of the method. Write
down the equations corresponding to the row-echelon matrix and use back substitution
to find the solutions.

� The matrix changes wherever we perform an elementary row operation, so that we
cannot use equal signs between the steps. Use a ∼ instead. The matrices are said to be
(row-) equivalent.

� We can proceed in a similar manner to obtain 0s above the pivots too, the reduced
row-echelon matrix. This is called Gauss-Jordan elimination. A unique solution can
be read directly from the final matrix, without the need for back substitution. By hand,
however, Gauss elimination and back substitution are usually quicker than Gauss-Jordan
elimination.

19.3.2 Using the calculator

The TI-84/CE has two built-in commands ref and rref in the matrix MATH menu.

ref (matrix ), where matrix is one of the ten matrices [A] – [J] used by the calculator, produces
the row-echelon form of matrix (Gauss elimination).

rref (matrix ) produces the reduced row-echelon form of matrix (Gauss-Jordan elimination).

Using IFrac in the math menu converts the elements to fractions where possible: for example

ref ([A])IFrac displays the row-echelon form of [A] with elements as fractions.

The GAUSS/GAUSSCE program27

The programs just automate these procedures.

Store the matrix in [A] using matrix EDIT. Run GAUSS/GAUSSCE. At the pauses, the matrix
displayed is in

� row-echelon form — decimal version.

� row-echelon form — fraction version.

� reduced row-echelon form — decimal version.

� reduced row-echelon form — fraction version.

Press enter to move through the different forms and enter after the final form to complete
the program. If you want to stop at any intermediate stage, press on Quit.

After running the program, the original matrix remains in [A], with the row-echelon form

stored in [D] and the reduced row-echelon form in [E]. Use matrix to recall either [D] or [E]
for further calculations.

27available at canberramaths.org.au under Resources
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Examples: Gauss elimination 10 4 1 1
6 2 1 4
1 0 0 0

 ∼
 1 0.4 0.1 0.1

0 1 −1 −8.5
0 0 1 7

 =

 1 2/5 1/10 1/10
0 1 −1 −17/2
0 0 1 7



Using the ref command

 0 4 1 1
6 2 1 4
1 0 0 0

 ∼
 1 0.3̇ 0.16̇ 0.6̇

0 1 0.25 0.25
0 0 1 7

 =

 1 1/3 1/6 2/3
0 1 1/4 1/4
0 0 1 7


 0 4 1 1

0 2 1 4
0 1 0 0

 ∼
 0 1 0.25 0.25

0 0 1 7
0 0 0 1

 =

 0 1 1/4 1/4
0 0 1 7
0 0 0 1



Example: Gauss-Jordan elimination
1 2 3 5
5 1 3 2
4 1 1 1
2 4 3 1

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Using the GAUSSCE program
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19.3.3 Exercises

These exercises assume you have covered the theory of solving simultaneous linear equations
using Gauss elimination and the inverse-matrix method. Solutions are on page 77.

1. Enter the matrix below carefully into [A] using matrix EDIT.
0 1 1 −2 −3
1 2 −1 0 2
2 4 1 −3 −2
1 −4 −7 −1 −19


This matrix is the augmented matrix P

==
| q
∼

for the following system of equations, in

matrix form P
==
v
∼

= q
∼

:

x2 + x3 − 2x4 = −3

x1 + 2x2 − x3 = 2

2x1 + 4x2 + x3 − 3x4 = −2

x1 − 4x2 − 7x3 − x4 = −19

Solve this system with Method:

A using the calculator to find the row-echelon form (Gaussian elimination), then back
substitution (you have to do this);

B using the calculator to find the reduced row-echelon form (Gauss-Jordan elimina-
tion), from which you can read off the answer;

C using v
∼

= P
==

−1q
∼

. Do you understand why this works?

A little manipulation on the calculator allows us to evaluate P
==

−1q
∼

.

Change [A] to the matrix P
==

by changing the column dimension to 4 using matrix

EDIT: this chops off the last column of [A].

Store the column matrix q
∼

in [B], then evaluate [A]−1[B].

PTO
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2. Solve the following systems of equations using each of the three methods using the
calculator to do the Gauss or Gauss-Jordan elimination.

Check your answers by substituting them back into the equations.

Can you use Method C to solve these? What happens in (b) and (c) below? Can you
explain? What is det

(
P
==

)
? What does this tell you about the inverse matrix?

(a) 2x− 5y + 5z = 17

x− 2y + 3z = 9

−x + 3y = −4

(b) x1 + x2 − 5x3 = 3

x1 − 2x3 = 1

2x1 − x2 − x3 = 0

(c) x1 − x2 + 2x3 = 4

x1 + x3 = 6

2x1 − 3x2 + 5x3 = 4

3x1 + 2x2 − x3 = 1

Answers

(a) x=1, y=−1, z=2

(b) x1 =1+2t, x2 =2+3t, x3 = t; t any non-zero number

(c) no solution.

76



19.3 Systematic Gauss Elimination 19 MATRIX AND VECTOR OPERATIONS

19.3.4 Solutions

1. Enter the matrix below carefully into [A] using matrix EDIT.
0 1 1 −2 −3
1 2 −1 0 2
2 4 1 −3 −2
1 −4 −7 −1 −19


This matrix is the augmented matrix P

==
| q
∼

for the following system of equations, in

matrix form P
==
v
∼

= q
∼

:

x2 + x3 − 2x4 = −3

x1 + 2x2 − x3 = 2

2x1 + 4x2 + x3 − 3x4 = −2

x1 − 4x2 − 7x3 − x4 = −19

A. Solve this system using the calculator to find the row-echelon form (Gaussian
elimination), then back substitution (you have to do this);

Either run the GAUSS/GAUSSCE program (left-hand screen below) or the ref com-
mand (right-hand screen) to give the row-echelon form of the matrix.

Using math 1 (IFrac) converts decimals to fractions where possible.

The corresponding (equivalent) equations are

x1 + 2x2 +
1

2
x3 −

3

2
x4 = −1

x2 +
5

4
x3 −

1

12
x4 = 3

x3 − x4 = −2

x4 = 3
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The last equation gives x4 =3.

Substituting this into the third equation gives x3 =−2+x4 =−2+3=1.

Substituting these into the second equation gives

x2 = 3 − 5

4
x3 +

1

12
x4 = 3 − 5

4
+

3

12
= 2.

Substituting these into the first equation gives

x1 = −1 − 2x2 −
1

2
x3 +

3

2
x4 = −1 − 4 − 1

2
+

9

2
= −1.

Therefore, x1 =−1, x2 =2, x3 =1, x4 =3.

B. using the calculator to find the reduced row-echelon form (Gauss-Jordan elimina-
tion), from which you can read off the answer;

Either run the GAUSS/GAUSSCE program again or use the rref command to give
the reduced-row-echelon form of the matrix.

The corresponding (equivalent) equations are

x1 = −1

x2 = 2

x3 = 1

x4 = 3,

the answer directly.

C. using v
∼

= P
==

−1q
∼

. Do you understand why this works?

Change [A] from the 4×5 augmented matrix to the 4×4 matrix A
==

by changing the

column dimension to 4 using matrix EDIT: this chops off the last column of [A]

(top matrix in the figure below).

Store the column matrix b
∼

in [B], then evaluate [A]−1[B].

This method works here because the matrix P
==

is invertible, corresponding to the

case in which there is a unique solution.

Again the answer is x1 =−1, x2 =2, x3 =1, x4 =3.
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2. Solve the following systems of equations using each of the three methods using the
calculator to do the Gauss or Gauss-Jordan elimination.

Check your answers by substituting them back into the equations.

(a) 2x− 5y + 5z = 17

x− 2y + 3z = 9

−x + 3y = −4

In matrix form,  2 −5 5
1 −2 3
−1 3 0

 x
y
z

 =

 17
9
−4

 ,
with augmented matrix  2 −5 5 17

1 −2 3 9
−1 3 0 −4

 .
The row-echelon form from GAUSS/GAUSSCE (Method A) is 1 −2.5 2.5 8.5

0 1 1 1
0 0 1 2

 .
The corresponding equations are

x− 2.5y + 2.5z = 8.5

y + z = 1

z = 2

The last equation gives z= 2 directly. Substituting this into the second equation
gives y=−1, and these into the first equation x=1.

The unique solution from Method A is x=1, y=−1 and z=2.

PTO
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Using GAUSS/GAUSSCE for Method B, Gauss-Jordan elimination, starting with
the augmented matrix in [A]:

The right-hand column of the reduced row-echelon form gives the solution; each
equation now only contains one variable.

Following the hint in Question 1 for putting P
==

back in matrix [A], the RHS of the

original system in [B] and evaluating [A]−1[B] gives the Method C result

which gives the solution directly.

Substituting the solution x=1, y=−1 and z=2 back into the original equations:

LHS = 2×1− 5×−1 + 5×2 = 17 = RHS.

LHS = 1− 2×−1 + 3×2 = 9 = RHS.

LHS = −1 + 3×−1 = −4 = RHS.

The solution is verified.

PTO
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(b) x1 + x2 − 5x3 = 3

x1 − 2x3 = 1

2x1 − x2 − x3 = 0

In matrix form,  1 1 −5
1 0 −2
2 −1 −1

 x
y
z

 =

 3
1
0

 ,
with augmented matrix  1 1 −5 3

1 0 −2 1
2 −1 −1 0

 .
GAUSS/GAUSSCE gives the row-echelon form (Method A) 1 −0.5 −0.5 0

0 1 −3 2
0 0 0 0

 .
The bottom row of all zeros tells us there is an infinite number of solutions.

The corresponding equations are

x1 + x2 − 5x3 = 3

x2 − 3x3 = 2

Here, x3 is a free variable: let x3 = t, t ∈ R.

The second equation gives x2 =2+3t, and the first x1 =1+2t.

The solution is x1 =1+2t, x2 =2+3t and x3 = t, t ∈ R

Using GAUSS/GAUSSCE for Method B, Gauss-Jordan elimination,

The right-hand column of the reduced row-echelon form does not gives the solution
directly here. However, back substitution is easier with the reduced row-echelon
form than with the row-echelon form.

Putting P
==

back in matrix [A], the RHS of the original system in [B] and evaluating

[A]−1[B] gives an error message: No inverse exists.

Method C cannot be used, consistent with the fact that there is not a unique
solution.
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Substituting the solution x1 = 1+2t, x2 = 2+3t and x3 = t back into the original
equations:

LHS = 1+2t+ 2+3t− 5t = 3 = RHS.

LHS = 1+2t− 2t = 1 = RHS.

LHS = 2(1+2t)− (2+3t)− t = 0 = RHS.

The solution is verified.

(c) x1 − x2 + 2x3 = 4

x1 + x3 = 6

2x1 − 3x2 + 5x3 = 4

3x1 + 2x2 − x3 = 1

In matrix form, 
1 −1 2
1 0 1
2 −3 5
3 2 −1


 x
y
z

 =


4
6
4
1

 ,
with augmented matrix 

1 −1 2 4
1 0 1 6
2 −3 5 4
3 2 −1 1


GAUSS/GAUSSCE gives the row-echelon form (Method A)

1 2
3
−1

3
1
3

0 1 −17
3
−10

3

0 0 1 67
6

0 0 0 1


The bottom row tells us there is no solution: the corresponding equation is
0x1 + 0x2 + 0x2 = 1.
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Using GAUSSCE for Method B, Gauss-Jordan elimination,

Again no solution.

Putting P
==

back in matrix [A], the RHS of the original system in [B] and evaluating

[A]−1[B] gives an error message: No inverse exists.

Method C cannot be used, consistent with the fact that there is not a unique
solution.

What is det
(
P
==

)
? What does this tell you about the inverse matrix?

In (b) and (c), det
(
P
==

)
=0, confirming that an inverse matrix does not exist.
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19.4 Applications

19.4.1 Data analysis and curve fitting

A very large number of measurements, surveys and so on generate data points (xi, yi), i =
1, 2, 3, . . . , n, and we would like to find ways to represent concisely all the results.

Mathematically we check to see if there is some formula or equation we can devise that will
reproduce the data. We will then be able to use that formula to make predictions.

Two situations and approaches come to mind, and both almost always lead us into linear-
algebra problems.

Situation 1

We have scattered data points, and we look for the
curve that fits best through the data points. It may
be a straight line or some other curve that we be-
lieve is useful or the right one to use for some other
reason.

y

x

This is the sort of problem Gauss solved when devising a theory for finding the orbits of
planets or other astronomical bodies when a few measurements were available, but with
limited accuracy.

The Method of Least Squares is commonly used, and leads to a linear-algebra problem for the
numbers defining the detailed curves. The least-squares algorithm for a number of different
curves is built into the curve-fitting commands on your graphics calculator.

Situation 2

The data points seem to lie on a smooth curve, and
we look for a curve that passes through all points
(an exact fit).
If we find a formula for that curve, we can use it to
give y values for x values between the data points
— this is called interpolation.

y

x

We can also use the formula to get y values when x is outside the set of x values for which data
are available, e.g. using the dashed curve. This is called extrapolation, and can be dangerous,
as the curve might in practice behave quite differently beyond the measured data points.

Obvious question: Which kind of curve to fit to the data?

This is a matter of experience. Sometimes an underlying theory will suggest the sort of curve
to use. Generally we would try to use the simplest sorts of functions so the working is easy.
One very commonly used simple form is a polynomial:

y = a0 + a1x + a2x
2 + a3

x + a4x
4 + · · · + amx

m.

The data points are then used to find the coefficients a0, a1, a2, . . . , am.

84



19.4 Applications 19 MATRIX AND VECTOR OPERATIONS

Example: Find a polynomial passing through the three points (1, 2), (2, 1) and (3, 2).28

Define the variables

There are three data points, so we can fit a unique quadratic polynomial

y = a0 + a1x + a2x
2,

which has three unknowns. We have to find values for a0, a1 and a2.

Formulate the equations

Fitting data point 1 gives: 2 = a0 + a1 + a2 (x = 1, y = 2)

data point 2 gives: 1 = a0 + 2a1 + 4a2 (x = 2, y = 1)

data point 3 gives: 2 = a0 + 3a1 + 9a2 (x = 3, y = 2).

Solve the equations

Solving these equations (Gauss elimination) gives a0 = 5, a1 = −4 and a2 = 1.

Answer the question

The required quadratic polynomial is y = 5− 4x+ x2.

Some observations

1. Because of our choice of function to fit, we reduced the problem to one of solving linear
equations.

2. Choosing a function where the unknown parameters enter non-linearly, for example
y = AxB sin(Cx), would lead to nasty simultaneous non-linear equations for A, B and
C when the data points are fitted.

3. If the powers of x in the polynomial were replaced by some other functions of x, e.g.
instead of 1, x, x2, x3, . . . , we use sin(1), sin(x), sin(2x), sin(3x), . . . , we would still get
linear equations for the coefficients a0, a1, a2, a3, . . . when fitting the data points. Such
things are also commonly used when applying mathematics in scientific and engineering
work.

4. What would happen if we had tried other polynomials?

A line? Our three equations for a0 and a1 are now inconsistent. We cannot fit
a line through these three points.

A cubic? Our three equations for a0, a1, a2, a3 are consistent, but the solution
involves a parameter. There is an infinite number of different cubics
that can be fitted through these three points.

28Fitting polynomials up to quartics using the built-in calculator routines is covered in Chapter 5 of Volume
1 of this book. Fitting polynomials of any degree using a calculator program is covered in Chapter 21 of this
volume.
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Solutions to the Exercises here are in Section 19.4.5.

Exercise

Find a polynomial of degree 2 that passes through the points (2, 5), (3, 2) and (4, 5).

Check that each point does lie on the polynomial. You may do this either algebraically or
graphically.

Answer : y = 29− 18x+ 3x2.

Exercise

In the example on the previous page, do the calculations suggested in Point 4, that is

(a) fitting a straight line to these three points;

(b) fitting a cubic polynomial to these three points.

In the second case, write down the equation of the cubic that fits the points (it should contain
a parameter) and plot the cubic for a few values of the parameter, say −1, 0 and 1, to verify
that it does indeed pass through the three points.

Think about extrapolation in these cases. Is it likely to be accurate?

Answers : (a) no solution; (b) y = 5− 6t+ (−4 + 11t)x+ (1− 6t)x2 + tx3, t ∈ R.
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19.4.2 Balancing chemical reactions

Suppose we are investigating the effects of phosphoric acid H3PO4 on calcium Ca.

The molecules produced are calcium phosphate Ca3P2O8 and hydrogen gas H2.

In order to see how this can work (if it can work!), we proceed as follows.

Define the variables

Let the numbers of molecules involved be x, y, z and w respectively.

Formulate the equations

The chemical reaction is

xCa + yH3PO4 −→ zCa3P2O8 + wH2.

We now balance the numbers of atoms involved:

Ca : x = 3z or x −3z = 0
H : 3y = 2w or 3y −2w = 0
P : y = 2z or y −2z = 0
O : 4y = 8z or 4y −8z = 0

So we have a set of homogeneous linear equations for x, y, z and w.

Solve the equations

augmented
matrix


1 0 −3 0 0
0 3 0 −2 0
0 1 −2 0 0
0 4 −8 0 0

 reduces to
row-echelon

form


1 0 −3 0 0
0 1 −2 0 0
0 0 1 −1

3
0

0 0 0 0 0

 .
Converting back to equations and solving gives

w = t z =
1

3
t y =

2

3
t x = t t ∈ R.

Answer the question

This is a case where the physical application tells us how to choose the value of t.

First, we are talking about numbers of molecules, so t must give positive integer values
for x, y, z and w.

Second, it is the convention to give the smallest numbers of molecules that can be in-
volved — in any reaction, the actual numbers of molecules involved will just be multiples
of those numbers, depending on how much of the chemicals is used.

So we take t = 3, and the reaction is written as

3Ca + 2H3PO4 −→ Ca3P2O8 + 3H2.

Note that if this had not been a valid reaction (say if we had left out the H2), the homogeneous
equations would have given us only the trivial solution to tell us that fact.
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19.4.3 Networks

A very large number of modelling problems involve networks.

Think of : supply of water, gas, electricity, broadband connection; streets; airline
routes; railways; electric circuits; neural networks — biological and arti-
ficial; flows of money between banks, businesses, customers; . . . .

The design and optimisation of these networks are mathematical problems of great impor-
tance; whole branches of Mathematics have grown up to tackle different aspects of networks.

Here are two small examples showing how simple flows in networks can be calculated. Both
involve the idea of a

Linear Conservation Principle at a junction
What goes into a junction must also come out.
Otherwise there would be a pile-up at the junction!

If x measures the thing flowing in the network in this
example, 25 + x1 = x2 + x3 (input = output). mbox

25

x
x

2

x
3

1

Note that xi is defined to be positive in the direction of the arrow. If xi turns out negative
in the solution, this means the arrow is reversed (the xi are 1D vectors).

19.4.4 Traffic flow

This is a problem in the design and management of city
streets. The networks may be very large, and a model
allows planners to see the effect of design variations, ac-
cident problems, street closures, etc.

city

Here is a small piece of a network so we can see the
type of equations generated. The units in the flow are
vehicles per hour.

100

100

200

x

z

y

400

Define the variables

Call the unknown traffic flows x, y and z vehicles per hour, as shown on the diagram (directions
must be specified here too by the arrows).

PTO
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Formulate the equations

The conservation of vehicles at each of the three junctions gives the equations — input on
the left, output on the right; starting at the bottom junction:

200 = x + y

100 + 100 + x = z

y + z = 400.

Re-arranging these equations into standard form gives

x + y = 200
−x + z = 200

y + z = 400

and these are equations we can
solve using Gauss elimination.

Solve the equations

Augmented
matrix

 1 1 0 200
−1 0 1 200

0 1 1 400

 converts to
row-echelon

form

 1 1 0 200
0 1 1 400
0 0 0 0

. Check!

The solution is

z = t y = 400− t x = t− 200 t ∈ R.

Answer the question

We could now use this model to see the effect, for example, of making the x street one way.
Then we would require

x > 0, implying t > 200,

and that tells us the traffic flows will be z > 200 and y < 200.

Maybe there are roadworks such that y < 50. What happens?

Of course, that is easy to see in our simple example, but in a big, complex city model, the
effects of street changes may be quite hard to assess without a mathematical model.
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Exercise

The flow of traffic (in vehicles per hour) around a Rome roundabout is shown below.

J-
ZPEM1303

Eng Maths 1,4'

\?

\-,

Part A: Linear Algebra Start a new answer book

Question 1. Start a new page in your answer book.
Write the question number in the box at the top of the page.

[17 marks]

The flow of traffic (in vehicles per hour) around a Rome roundabout is shown below

200

fr1 fr2

100 100

I4

200

(a) Solve this system for 11, fizt fls and ra.

Write your solution in terms of a parameter t

[8 marks]

(b) For what values of the parameter t is the solution realistic, i.e. the traffi.c travels only
in the direction of the arrows?

[3 marks]

(c) Find the traffic flow if roadworks block the road corresponding to 12'

[3 marks]

(d) With u2 restored to normal operation, what happens if a group of demonstrators

blocks the road corresponding to za? How could the traffic authorities fix this prob-

lem temporarily?

[3 marks]

Page 3 of 15

(a) Solve this system for x1, x2, x3 and x4.

Write your solution in terms of a parameter t.

(b) For what values of the parameter t is the solution realistic, i.e. the traffic travels only
in the direction of the arrows?

(c) Find the traffic flow if roadworks block the road corresponding to x2.

(d) What happens if a group of demonstrators blocks the road corresponding to x4?

How could the traffic authorities fix this problem temporarily?

Exercise

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below.

(a) Write down the system of equations that describes the traffic flow and convert to matrix
form.

(b) (i) Convert the matrix to row-echelon form.

(ii) Hence find x1, x2, x3 and x4.

(c) The local traffic authority wants the loop x1 → x2 → x3 → x4 to function as a one-
way rectangular ‘roundabout’ (rectabout?) in the direction shown by the arrows in the
figure.

For what values of the parameter in your solution in (b)(ii) is this possible?

Where on the rectabout is the traffic flow greatest?
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(d) The traffic authority wants to close down completely for resealing the road between the
intersections A and B, i.e. that corresponding to x4.

Can traffic still flow in the network?

Sketch the diagram of the resulting traffic flow (with arrows) in this case.

How is this different from normal operation?

Exercise

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below. A, B, C and D are intersections.

(a) Write down the system of equations that describes the traffic flow and convert to matrix
form.

(b) (i) Convert the matrix to row-echelon form.

(ii) Explain why x3 and x5 are free variables.

(iii) Hence find x1, x2, x3, x4 and x5.

(c) Roadworks have closed down completely the road corresponding to x3, and restricted
the flow on the road corresponding to x5 to 100 vehicles per hour.

(i) Find the traffic flow on the other roads.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

(d) The road engineers (who hadn’t done the theoretical modelling beforehand) later realise
that they could have resurfaced one other road while carrying out these roadworks,
thereby saving a lot of money.
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Exercise

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below. The numbers in circles are intersection labels; the numbers on the roads are the road
labels.

(a) Write down the system of equations that describes the traffic flow in terms of the
variables x1 to x6.

(b) (i) Write the equations in matrix form.

(ii) Convert the augmented matrix to row-echelon form using Gauss elimination.

(iii) Write out the equations corresponding to the row-echelon form.

(iv) Which are the free variables?

Hint : A free variable is one in which the corresponding column of the augmented
matrix does not contain a pivot (leading 1). This means that a free variable is not
the first variable in any of the equations corresponding to the augmented matrix.

There are then two parameters: call them t and p.

(v) Hence find x1 to x6.

(c) The Road Traffic Authority is investigating the possiblity of making Road 3 a pedestrian
plaza.

(i) Is this possible? If so, find the traffic flow on the other roads.

(ii) What other road might it make sense to close to simplify the traffic flow.

Describe the traffic flow in this case.

PTO
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(d) The Road Traffic Authority wants to close Roads 1 and 3 (this is before it becomes a
pedestrian plaza) for a week-long festival.

(i) Is this possible? If so, find the traffic flow on the other roads.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

(e) The Road Traffic Authority needs to close roads 5 and 6 for an extended period for
major building works.

(i) Is this possible? If so, find the traffic flow on the other roads.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

Exercise

The flow of traffic in vehicles per hour through a network of streets in a CBD is shown in the
figure below.

(a) Write down the system of equations that describes the traffic flow in terms of the
variables x1 to x7.

(b) (i) Write the equations in matrix form.

(ii) Convert the augmented matrix to row-echelon form using Gauss-Jordan elimina-
tion.

(iii) Write out the equations corresponding to the row-echelon form.

(iv) Which are the free variables?

There are then two parameters: call them t and p.

(v) Hence find x1 to x7.

(c) Can the roads be closed one at a time for maintenance while still maintaining traffic
flow?

Can drivers still pass through the CBD (enter at one side, leave at the other) in all
cases?
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Exercise

A section of gas pipeline has the flows (in appropriate units) shown below. Here, gas can only
flow in the indicated directions.

(a) Using the Linear Conservation Principle, find the flows x, y, z and w.

(b) Could the system function if a pipe was closed for maintenance so that

(i) z = 0?

(ii) w = 0?

(c) (i) Could the system function if the flow in the y pipe was restricted so that y 6 50?

(ii) Is there a minimum allowed for the flow y? Explain why your answer makes sense
by referring to the diagram.
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19.4.5 Solutions

Exercise (page 90)

Find a polynomial of degree 2 that passes through the points (2, 5), (3, 2) and (4, 5).

Define variables

Let the polynomial of degree 2 (quadratic) be y = a0 + a1x+ a2x
2.

Formulate the equations

Substituting the values for x and y for each point into the equation of the quadratic gives

5 = a0 + 2a1 + 4a2 (x = 2, y = 5)

2 = a0 + 3a1 + 9a2 (x = 3, y = 2)

5 = a0 + 4a1 + 16a2 (x = 4, y = 5)

Solve the equations

The augmented matrix is therefore  1 2 4 5
1 3 9 2
1 4 16 5

 .
Gauss elimination produces the row-echelon matrix 1 2 4 5

0 1 5 −3
0 0 1 3

 .
The solution, from back substitution, is a2 = 3, a1 = −18 and a0 = 29.

Answer the question

The required polynomial is therefore y = 29− 18x+ 3x2.

Check that each point does lie on the polynomial.

Algebraically, we substitute an x value into the RHS of the polynomial and show that we get
the corresponding y value.

y(2) = 29− 36 + 12 = 5, as required.

y(3) = 29− 54 + 27 = 2, as required.

y(4) = 29− 72 + 48 = 5, as required.

Graphically, plot y = 29− 18x+ 3x2 and use Trace to verify that the points lie on the curve.
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Exercise (page 86)

(a) Fit a straight line to the three points (1, 2), (2, 1) and (3, 2).

Fitting a straight line y = a0 + a1x gives the equations

2 = a0 + a1

1 = a0 + 2a1

2 = a0 + 3a1,

in matrix form  1 1
1 2
1 3

[ a0

a1

]
=

 2
1
2

 .
Carrying out Gauss elimination on the matrix 1 1 2

1 2 1
1 3 2

 gives

 1 1 2
0 1 −1
0 0 2

 ,
showing that the equations are inconsistent: the last row gives 0a0 + 0a1 = 2.

A straight line cannot be fitted exactly to these three points; they are not collinear.

(b) Fit a cubic polynomial to these three points.

In this case, write down the equation of the cubic that fits the points (it should contain
a parameter) and plot the cubic for a few values of the parameter to verify that it does
indeed pass through the three points.

Think about extrapolation in these cases. Is it likely to be accurate?

Fitting the data points (1, 2), (2, 1) and (3, 2) to a general cubic

y = a0 + a1x + a2x
2 + a3x

3

gives the equations

2 = a0 + a1 + a2 + a3

1 = a0 + 2a1 + 4a2 + 8a3

2 = a0 + 3a1 + 9a2 + 27a3,

in matrix form  1 1 1 1
1 2 4 8
1 3 9 27



a0

a1

a2

a3

 =

 2
1
2

 .
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Gauss elimination on the augmented matrix 1 1 1 1 2
1 2 4 8 1
1 3 9 27 2


gives, using the calculator,  1 0 0 6 5

0 1 0 −11 −4
0 0 1 6 1

 ,
with corresponding equations

a0 + 6a3 = 5

a1 − 11a3 = −4

a2 + 6a3 = 1.

a3 is a free variable: set a3 = t, t ∈ R.

Then, a2 = 1− 6t, a1 = −4 + 11t and a0 = 5− 6t.

Hence the cubic is

y = 5− 6t + (−4 + 11t)x + (1− 6t)x2 + tx3 t ∈ R.

The figure below shows the three points (generated by Plot1) and the graphs of the
cubic with t = −1, t = 0 and t = 1, respectively. Store the value of t in the T memory
before graphing.

window [0, 4, 1]×[−0.4, 4, 1]

All three curves fit the three given points, but clearly extrapolation is going to give
quite different values, depending on which curve you choose.

For example,

y(0.5) = 1.375 t = 1

= 3.25 t = 0

= 5.125 t = −1.
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Exercise (page 91)

The flow of traffic (in vehicles per hour) around a Rome roundabout is shown below.

J-
ZPEM1303

Eng Maths 1,4'

\?

\-,

Part A: Linear Algebra Start a new answer book

Question 1. Start a new page in your answer book.
Write the question number in the box at the top of the page.

[17 marks]

The flow of traffic (in vehicles per hour) around a Rome roundabout is shown below

200

fr1 fr2

100 100

I4

200

(a) Solve this system for 11, fizt fls and ra.

Write your solution in terms of a parameter t

[8 marks]

(b) For what values of the parameter t is the solution realistic, i.e. the traffi.c travels only
in the direction of the arrows?

[3 marks]

(c) Find the traffic flow if roadworks block the road corresponding to 12'

[3 marks]

(d) With u2 restored to normal operation, what happens if a group of demonstrators

blocks the road corresponding to za? How could the traffic authorities fix this prob-

lem temporarily?

[3 marks]

Page 3 of 15

(a) Solve this system for x1, x2, x3 and x4.

Write your solution in terms of a parameter t.

Define variables

The variables are defined in the diagram.

Formulate the equations

From conservation of vehicles at each junction (number of vehicles entering an inter-
section = number of vehicles leaving the intersection), starting at the top junction and
going clockwise:

200 + x2 = x1

x4 = x2 + 100

x3 = x4 + 200

x1 + 100 = x3.

Solve the equations

Re-arranging into standard form gives

x1 − x2 = 200
x2 − x4 = −100

x3 − x4 = 200
x1 − x3 = −100

The augmented matrix is therefore


1 −1 0 0 200
0 1 0 −1 −100
0 0 1 −1 200
1 0 −1 0 −100

.
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Gauss elimination produces the row-echelon matrix
1 −1 0 0 200
0 1 0 −1 −100
0 0 1 −1 200
0 0 0 0 0

 .
There is no leading 1 corresponding to x4, so we let x4 = t, where t ∈ R.

Then, x3 = 200 + t, x2 = −100 + t, x1 = 100 + t.

(b) For what values of t is the solution realistic, i.e. the traffic is one way in the direction
of the arrows.

For one-way traffic in the direction of the arrows, all variables must be positive or zero.
For x4, we require t > 0; for x3, t > −200; for x2, t > 100; for x1, t > −100.

The t values that satisfy all these are t > 100.

(c) Find the traffic flow if roadworks block the road corresponding to x2.

If the road corresponding to x2 is blocked, x2 = 0. Therefore, t= 100, giving x4 = 100,
x3 =300 and x1 =200. These are all possible values, so the roundabout can cope when
the road corresponding to x2 is blocked.

(d) What happens if a group of demonstrators blocks the road corresponding to x4? How
could the traffic authorities fix this problem temporarily?

If the road corresponding to x4 is blocked, x4 = 0. Therefore, t = 0, giving x3 = 200,
x2 =−100 and x1 =100.

The value for x2 is negative, meaning the traffic must go along this part of the road in
the opposite direction to normal. The roundabout cannot function as normal.

The problem could be fixed temporarily by allowing traffic to flow in the opposite
direction to the arrow for x2.
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Exercise (page 90)

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below.

(a) Write down the system of equations that describes the traffic flow and convert to matrix
form.

Equating inputs (LHS below) and outputs (RHS below) at each intersection, starting
at the bottom left intersection and going clockwise gives the following equations.

100 + x1 = 400 + x2 or x1 − x2 = 300.

300 + x2 = 400 + x3 or x2 − x3 = 100.

750 + x3 = 250 + x4 or x3 − x4 = −500.

200 + x4 = 300 + x1 or x1 − x4 = −100.

In matrix form, 
1 −1 0 0
0 1 −1 0
0 0 1 −1
1 0 0 −1



x1

x2

x3

x4

 =


300
100
−500
−100

 .

(b) (i) Convert the matrix to row-echelon form.

The augmented matrix is 
1 −1 0 0 300
0 1 −1 0 100
0 0 1 −1 −500
1 0 0 −1 −100

 .
Gauss elimination gives the row-echelon form

1 −1 0 0 300
0 1 −1 0 100
0 0 1 −1 −500
0 0 0 0 0

 .
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(ii) Hence find x1, x2, x3 and x4.

We know there is an infinite number of solutions because of the bottom row of
zeroes. The free variable (no corresponding pivot) is x4.

Let x4 = p ∈ R.

Then, from Row 3, x3 − x4 = −500, so that x3 = p− 500.

From Row 2, x2 − x3 = 100, so that x3 = p− 400.

From Row 1, x1 − x2 = 300, so that x1 = p− 100.

Therefore, the solution is

x1 = p − 100

x2 = p − 400

x3 = p − 500

x4 = p p ∈ R.

(c) The local traffic authority wants the loop x1 → x2 → x3 → x4 to function as a one-
way rectangular ‘roundabout’ (rectabout?) in the direction shown by the arrows in the
figure.

For what values of the parameter in your solution in (b)(ii) is this possible?

For the rectabout to function as shown by the arrows, we require all flows to be non-
negative. From x3, this requires p > 500.

Where on the rectabout is the traffic flow greatest?

With p = 500, x1 =400, x2 =100, x3 =0 and x4 =500, so the x4 flow, at 500 vehicles per
hour, is the greatest.

(d) The traffic authority wants to close down completely for resealing the road between the
intersections A and B, i.e. that corresponding to x4.

Can traffic still flow in the network? How is this different from normal operation?

We have x4 = p = 0, so that x1 =−100, x2 =−400, x3 =−500 and x4 =0. The negative
signs mean that the traffic flows x1, x2 and x3 are in the opposite direction to the arrows.

It is therefore possible to close down completely the road between the intersections A
and B but the rectabout would have traffic going in the opposite direction to normal.
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Exercise (page 91)

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below. A, B, C and D are intersections.

(a) Write down the system of equations that describes the traffic flow and and convert to
matrix form.

Equating inputs and outputs at each intersection gives:

Intersection A: 400 + x2 = x1, or x1 − x2 = 400.

Intersection B: x1 + x3 = x4 + 600, or x1 + x3 − x4 = 600.

Intersection C: 300 = x2 + x3 + x5, or x2 + x3 + x5 = 300.

Intersection D: x4 + x5 = 100.

Putting the equations together gives

x1 + x2 = 400

x1 + x3 − x4 = 600

x2 + x3 + x5 = 300

x4 + x5 = 100.

In matrix form, 
1 −1 0 0 0
1 0 1 −1 0
0 1 1 0 1
0 0 0 1 1



x1

x2

x3

x4

x5

 =


400
600
300
100

 .
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(b) (i) Convert the matrix to row-echelon form.

The augmented matrix is 
1 −1 0 0 0 400
1 0 1 −1 0 600
0 1 1 0 1 300
0 0 0 1 1 100

 .
Gauss elimination gives the row-echelon form

1 −1 0 0 0 400
0 1 1 −1 0 200
0 0 0 1 1 100
0 0 0 0 0 0

 .

(ii) Explain why x3 and x5 are free variables.

There are no pivots (leading 1s) in Columns 3 and 5, corresponding to x3 and x5.

(iii) Hence find x1, x2, x3, x4 and x5.

Let x3 = p ∈ R, x5 = t ∈ R.

Then, from Row 3, x4 + x5 = 100, so that x4 = 100− t.

From Row 2, x2 + x3 − x4 = 200.

Therefore, x2 = 200− x3 + x4 = 200− p+ (100− t) = 300− p− t.

From Row 1, x1−x2 = 400, so that x1 = 400+x2 = 400+300−p− t = 700−p− t.

Therefore, the solution is

x1 = 700 − p − t

x2 = 300 − p − t

x3 = p

x4 = 100 − t

x5 = t, p, t ∈ R.

PTO
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(c) Roadworks have closed down completely the road corresponding to x3, and restricted
the flow on the road corresponding to x5 to 100 vehicles per hour.

(i) Find the traffic flow on the other roads.

We have x3 = p = 0 and x5 = t = 100.

Therefore,

x1 = 600

x2 = 200

x3 = 0

x4 = 0

x5 = 100.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

Of the 300 vehicles entering Intersection C, only 100 can go to Intersection D
(x5 =100).

The other 200 must go to Intersection A (x2 = 200), adding to the 400 entering
that intersection.

These 600 vehicles then proceed to Intersection B (x1 =600) and exit there.

(d) The road engineers (who hadn’t done the theoretical modelling beforehand) later realise
that they could have resurfaced one other road while carrying out these roadworks,
thereby saving a lot of money.

Which road was that and why?

We have x4 =0, so the road between Intersections B and D also carries no traffic.
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Exercise (page 92

The flow of traffic in vehicles per hour through a network of streets is shown in the figure
below. The numbers in circles are intersections, the numbers on the roads, the road labels.

(a) Write down the system of equations that describes the traffic flow in terms of the
variables x1 to x6.

Equating inputs (LHS below) and outputs (RHS below) at each intersection in numerical
order gives:

Intersection 1: 750 = x1 + x6 or x1 + x6 = 750.

Intersection 2: x1 = x2 + 200 or x1 − x2 = 200.

Intersection 3: x2 + x3 = x4 + 350 or x2 + x3 − x4 = 350.

Intersection 4: x4 + x5 = 200.

Intersection 5: x6 = x3 + x5 or x3 + x5 − x6 = 0.

Putting the equations together gives

x1 + x6 = 750

x1 − x2 = 200

x2 + x3 − x4 = 350

x4 + x5 = 200

x3 + x5 − x6 = 0.
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(b) (i) Write the equations in matrix form.
1 0 0 0 0 1
1 −1 0 0 0 0
0 1 1 −1 0 0
0 0 0 1 1 0
0 0 1 0 1 −1




x1

x2

x3

x4

x5

x6

 =


750
200
350
200
0

 .

(ii) Convert the augmented matrix to row-echelon form using Gauss elimination.

The augmented matrix is
1 0 0 0 0 1 750
1 −1 0 0 0 0 200
0 1 1 −1 0 0 350
0 0 0 1 1 0 200
0 0 1 0 1 −1 0

.

 ,
with Gauss elimination giving the row-echelon form

1 0 0 0 0 1 750
0 1 0 0 0 1 550
0 0 1 −1 0 −1 −200
0 0 0 1 1 0 200
0 0 0 0 0 0 0

.



(iii) Write out the equations corresponding to the row-echelon form.

x1 + x6 = 750

x2 + x6 = 550

x3 − x4 − x6 = −200

x4 + x5 = 200.

(iv) Which are the free variables?

No equation starts with x5 or x6 (no leading 1s in the corresponding 5th and 6th
columns in the row-echelon form): these are the free variables.

PTO
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(v) Hence find x1 to x6.

Let x5 = t, x6 = p; p, t ∈ R.

From the last equation, x4 = 200− x5 = 200− t.
From the third equation, x3 = −200 + x4 + x6 = −200 + (200− t) + p = p− t.
From the second equation, x2 = 550− x6 = 550− p.
From the first equation, x1 = 750− x6 = 750− p.

Therefore, the solution is 
750− p
550− p
p− t

200− t
t
p

 .

(c) The Road Traffic Authority is investigating the possiblitiy of making Road 3 a pedestrian
plaza.

(i) Is this possible? If so, find the traffic flow on the other roads.

To close Road 3 means p = t.

Therefore, we have for the xi, 
750− p
550− p

0
200− p

p
p

 .

Therefore, this arrangement is possible; there is still a free parameter to adjust the
flow of traffic on the other roads.

(ii) What other road might it make sense to close to simplify the traffic flow.

Describe the traffic flow in this case.

It seems sensible to have x4 =0 too, so that vehicles either turn right at Intersection
1 if they want to exit at Intersection 4 or they go 1 → 2 → 3, exiting at the
appropriate intersection.

x4 =0 means p=200, giving this behaviour.

PTO
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(d) The Road Traffic Authority wants to close Roads 1 and 3 (this is before it becomes a
pedestrian plaza) for a week-long festival.

(i) Is this possible? If so, find the traffic flow on the other roads.

To close Road 3 means p= t, and to close Road 1 means p=750.

Therefore, we have for the xi, 
0
−200

0
−550
750
750

 .

Therefore, this arrangement is possible.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

The 750 vehicles entering the system at Intersection 1 all turn right and continue
on to Intersection 4.

200 exit here, and the remaining 550 go to Intersection 3 in a direction opposite
to the arrow for x4.

350 exit at Intersection 3 and the remaining 200 go on to Intersection 2, where
they exit.

Hence we have a series of one-way streets: 1 → 5 → 4 → 3 → 2, all of which is
possible.

(d) The Road Traffic Authority needs to close Roads 5 and 6 for an extended period for
major building works.

(i) Is this possible? If so, find the traffic flow on the other roads.

To close roads 5 and 6 means p = t = 0.

Therefore, we have for the xi, 
750
550
0

200
0

750

 .

Therefore, this arrangement is possible.

(ii) In terms of the traffic-flow diagram, explain why your answer in (i) makes sense.

The traffic again follows a one-way route, this time 1 → 2 → 3 → 4, the opposite
direction to the previous case, with the appropriate numbers exiting at Intersections
2, 3 and 4.

108



19.4 Applications 19 MATRIX AND VECTOR OPERATIONS

Exercise (page 93)

The flow of traffic in vehicles per hour through a network of streets in a CBD is shown in the
figure below.

(a) Write down the system of equations that describes the traffic flow in terms of the
variables x1 to x7.

Equating inputs (LHS below) and outputs (RHS below) at each intersection, strating
top left and going clockwise gives:

Intersection 1: 600 = x1 + x3 or x1 + x3 = 600.

Intersection 2: x1 = x2 + x4 or x1 − x2 − x4 = 0.

Intersection 3: x2 + x5 = 500.

Intersection 4: 500 = x5 + x7 or x5 + x7 = 500.

Intersection 5: x4 + x7 = x6 or x4 − x6 + x7 = 0.

Intersection 6: x3 + x6 = 600.

Putting the equations together gives

x1 + x3 = 650

x1 − x2 − x4 = 0

x2 + x5 = 500

x5 + x7 = 500

x4 − x6 + x7 = 0

x3 + x6 = 600.
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(b) (i) Write the equations in matrix form.
1 0 1 0 0 0 0
1 −1 0 −1 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 −1 1
0 0 1 0 0 1 0
0 1 0 0 1 0 0





x1

x2

x3

x4

x5

x6

x7


=


600
0

500
0

600
500

 .

(ii) Convert the augmented matrix to row-echelon form using Gauss-Jordan elimina-
tion.

The augmented matrix is
1 0 1 0 0 0 0 600
1 −1 0 −1 0 0 0 0
0 0 0 0 1 0 1 500
0 0 0 1 0 −1 1 0
0 0 1 0 0 1 0 600
0 1 0 0 1 0 0 500


with Gauss-Jordan elimination giving the row-echelon form

1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 1 0 600
0 0 0 0 1 0 1 500
0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0

 .

(iii) Write out the equations corresponding to the row-echelon form.

x1 − x6 = 0

x2 − x7 = 0

x3 + x6 = 600

x4 − x6 + x7 = 0

x5 + x7 = 500.

(iv) Which are the free variables?

No equation starts with x6 or x7 (no leading 1s in the corresponding 6th and 7th
columns in the row-echelon form): these are the free variables.
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(v) Hence find x1 to x7.

Let x6 = t, x7 = p; p, t ∈ R.

From the first equation, x1 = x6 = t.

From the second equation, x2 = x7 = p.

From the third equation, x3 = 600− x6 = 600− t.
From the fourth equation, x4 = x6 − x7 = t− p.
From the fifth equation, x5 = 500− x7 = 500− p.

Therefore, the solution is 

t
p

600−t
t−p

500−p
t
p


.

(c) Can the roads be closed one at a time for maintenance while still maintaining traffic
flow?

Can drivers still pass through the CBD (enter at one side, leave at the other) in all
cases?

Closing the first road, setting x1 =0, means t=0. This means x6 =0 also, so we can do
these two roads at once.

The solution in this case is 

0
p

600
−p

500−p
0
p


.

Though traffic can still flow, the two halves of the CBD are effectively isolated. Traffic
entering top left can only turn right immediately twice and head back out in the direction
they came from on a parallel road. Traffic entering from the right can turn right at either
of the firsdt two intersections but must then turn right again and head back out in the
direction they came from.

Closing the second road, setting x2 =0, means p=0. This means x7 =0 also, so we can
again do two roads at once. This is just the mirror image of the first case, with drivers
entering from the right leaving back that way, having no choice of roads, while drivers
entering from the right have a choice of two intersections at which to turn right but
then must return in the direction from which they came.
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Setting x4 =0 means t=p, with solution

t
t

600−t
0

500−t
t
t


.

Traffic can flow freely in most directions and drivers can transit through the CBD.

The other two cases, x3 =0 and x5 =0 are similar, as one would expect from the diagram.

Exercise (page 94)

A section of gas pipeline has the flows (in appropriate units) shown below. Gas can only flow
in the indicated directions. vspace-3mm

(a) Using the Linear Conservation Principle, find the flows x, y, z and w.

Define variables

The variables are defined in the diagram.

Formulate the equations

Equating inputs (LHS) and outputs (RHS) at each junction, clockwise from top left,
gives

200 + 100 = x + y

y = z + 100

z + w = 100

x = w + 100.
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Solve the equations

Rewriting the equations systematically gives

x + y = 300

y − z = 100

z + w = 100

x − w = 100,

with augmented matrix (be careful to put in 0 for missing terms)
1 1 0 0 300
0 1 −1 0 100
0 0 1 1 100
1 0 0 −1 100

 .
Gauss elimination converts this to the row-echelon form

1 1 0 0 300
0 1 −1 0 100
0 0 1 1 100
0 0 0 0 0

 .
Back substitution gives w = t, z = 100− t, y = 200− t and x = 100 + t, t ∈ R.

Answer the question

The flows are given by x = 100 + t, y = 200 − t, z = 100 − t and w = t, where t is an
arbitrary number.

As we want flows here to be non-negative, we must have 0 6 t 6 100.

(b) Could the system function if a pipe was closed for maintenance so that

(i) z=0?

If z=0, we have t=100, and all flows are still non-negative.

The system still functions.

(ii) w=0?

If w=0, we have t=0, and again all flows are still non-negative.

The system still functions.

(c) (i) Could the system function if the flow in the y pipe was restricted so that y 6 50?

If y 6 50, we have t > 150. In this case, z would be negative, which is not allowed.

The system will not function if y 6 50.

(ii) Is there a minimum allowed for the flow y? Explain why your answer makes sense
by referring to the diagram.

The maximum allowable value for t here is 100, otherwise z < 0. This means the
minimum possible value for y is 100.

This makes sense when you look at the flow diagram. The only way for the top
output to be 100 is if there is a flow of at least 100 through y.
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19.5 Linear Transformations

Our original aim was to extend the single equation in one variable ax=b to systems of linear
equations in multiple variables; we did that by defining A

==
x
∼

= b
∼

, where A
==

and b
∼

are known

and x
∼

is to be found.

Instead of thinking of b
∼

as a given vector and x
∼

the unknown, we could consider the case

where x
∼

is given. A
==
x
∼

then generates a new vector b
∼

; vector x
∼

is transformed into vector b
∼

by the matrix A
==

.

These are linear transformations. Writing out the equations in full (e.g. see Section 19.5.4)
shows that the components of the new vector are just linear combinations or sums of the
components of the first vector; no squares, cubes, exponentials, etc are involved.

Linear transformations are common when vector and matrix theory is applied. We shall look
at the case of operations on position vectors in a plane.

Let T
==

be a matrix that operates on a 2D position vector r
∼1 to transform it into r

∼2 :

r
∼2 = T

==
r
∼1 or

[
x2

y2

]
=

[
t11 t12

t21 t22

] [
x1

y1

]
.

Our task is to find the matrices T
==

that describe important geometric operations.

19.5.1 Simplest case: Scaling

The matrix that scales (magnifies) a vector by s is

S
==

(s) =

[
s 0
0 s

]
= sI

==
.

r
∼2 = S

==
(s) r
∼1 = sI

==
r
∼1 = sr

∼1.

Example

S
==

(2) r
∼1 =

[
2 0
0 2

] [
1
1

]
=

[
2
2

]
= 2

[
1
1

]
.

Note: The inverse of S
==

(s) is S
==

(1/s): S
==

(s)S
==

(1/s)= I
==
, s 6= 0.
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Check using your calculator with S
==

(2) in [A]. In the TRANSFRM program, vector r
∼1 is stored

in matrix [E] and displayed, with label and norm, in blue at the top left of the screen.

The transformed vector [A] [E], label and norm are in black.

Exercises

Solutions to the exercises start on page 125.

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) S
==

(2) r
∼1 (b) S

==
(−1) r

∼1 (c) S
==

(−2) r
∼1.

19.5.2 Reflections

Let M
==

x =

[
1 0
0 −1

]
. What is the effect of M

==
x on a general position vector r

∼1 =

[
x1

y1

]
?

r
∼2 = M

==
x r∼1 in component form is

[
x2

y2

]
=

[
1 0
0 −1

] [
x1

y1

]
=

[
x1

−y1

]
.

So M
==

x changes y into −y. It acts to reflect or

mirror the vector in the x axis.

Example

Given r
∼1 =

[
1
1

]
(stored in [E]), plot on your calculator M

==
x r∼1.
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Similarly we find:

Words Picture Algebra

Reflect the vector in the y
axis.

r
∼2 = M

==
y r∼1,

where M
==

y =

[
−1 0

0 1

]
.

Check: M
==

y r∼1 =

[
−1 0

0 1

] [
x1

y1

]
=

[
−x1

y1

]
.

How about M
==

=

[
0 1
1 0

]
?

Try a few cases M
==
r
∼1, with:

r
∼1 = a i

∼

[
a
0

]
→
[

0
a

]

r
∼1 = a j

∼

[
0
a

]
→
[
a
0

]

r
∼1 = b i

∼
+ b j

∼

[
b
b

]
→
[
b
b

]

r
∼1 = c i

∼
− c j

∼

[
c
−c

]
→
[
−c
c

]
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We conclude that M
==

=

[
0 1
1 0

]
=M

==
x↔y describes or represents the operation of

reflection in the line y = x.

Aside: Could you prove that in general, i.e. go beyond checking a few special cases as we
did, to show it is a general result?

More generally, the matrix describing reflections in the line through the origin making
an angle θ with the x axis is [

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

]
.

Exercises

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) M
==

x r∼1 (b) M
==

y r∼1 (c) M
==

x↔y r∼1 (d) reflect r
∼1 in the line y=−x.

Observations about reflection matrices

1. Reflecting a vector twice through a mir-
ror gets back the original vector.

Mathematically, M
==
M
==
r
∼1 = r

∼1.

So M
==
M
==

= I
==

.

A reflection matrix M
==

is its own inverse: M
==

−1 = M
==

.

Check: M
==

x↔yM
==

x↔y =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
= I

==
.

Note that we used a geometric argument to deduce a property of matrices representing
a geometric operation.

2. For any reflection or mirror operation, there are two special vectors:

one is not changed at all: M
==
v
∼1 = v

∼1;

the other just reverses direction: M
==
v
∼2 = −v

∼2.

Example: For M
==

x

v
∼1 =

[
1
0

]
v
∼2 =

[
0
1

]
.
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Example: For M
==

x↔y

v
∼1 =

[
1
1

]
v
∼2 =

[
−1

1

]
.

Of course we can replace the 1s by any number a.

19.5.3 Rotations

Instead of trying out special cases, I will now give you the general formula. We will then
prove that it is correct, see a few examples and explore the algebra a little.

Theorem

The matrix that represents the operation of rotating a vector by an angle α in the anti-
clockwise direction is the rotation matrix

R
==

(α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
.

Proof

Let r
∼1 be a vector with length or norm

‖r
∼1‖ = r and at an angle θ to the x axis.

Then r
∼1 = r cos(θ) i

∼
+ r sin(θ) j

∼
,

or r
∼1 =

[
r cos(θ)
r sin(θ)

]
.

We now operate on r
∼1 with the matrix R

==
(α).

R
==

(α) r
∼1 =

[
cosα − sinα
sinα cosα

] [
r cos θ
r sin θ

]

=

[
r
(

cosα cos θ − sinα sin θ
)

r
(

sinα cos θ + cosα sin θ
) ]

=

[
r cos

(
α+θ

)
r sin

(
α+θ

) ] using trigonometric identities

= r
∼2.

We see that r
∼2 has exactly the same form as r

∼1, but the angle θ has been increased to θ+α.

This says that r
∼1 has been rotated through an angle α to get r

∼2, so R
==

(α) is the rotation

matrix for this operation.

Remember: This describes an anti-clockwise rotation. If the angle α is negative, the rotation
will be clockwise through an angle |α|.
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Examples

1. Specifying a rotation matrix

The matrix that rotates vectors by 90◦ or π/2 radians is

R
==

(π/2) =

[
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]
=

[
0 −1
1 0

]
.

The matrix that rotates vectors by π/3 radians or 60◦ is

R
==

(π/3) =

[
1/2 −

√
3/2√

3/2 1/2

]
.

2. Identifying a rotation matrix

Suppose A
==

=

[ √
3/2 1/2

−1/2
√

3/2

]
.

Because −1/2 = sin(−π/6) and
√

3/2 = cos(−π/6), we can identify A
==

as the matrix

representing a rotation by −π/6 or −30◦, so that A
==

= R
==

(−π/6).

This is actually a rotation by +30◦, but clockwise rather than anti-clockwise.

3. Using a rotation matrix

Find the vector r
∼2 produced when r

∼1 =

[
6
10

]
is rotated by 45◦ or π/4 radians.

r
∼2 = R

==
(π/4) r

∼1 =

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [
6
10

]
=

[
−2
√

2

8
√

2

]
.

You could check this by making sure the length of the vector has not been changed:

‖r
∼1‖ =

√
62+102 =

√
136 ;

‖r
∼2‖ =

√
(−2
√

2)2+(8
√

2)2 =
√

136 = ‖r
∼1‖.

Exercises

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/4) r
∼1 (b) R

==
(−π/3) r

∼1 (c) R
==

(3π/2) r
∼1 (d) R

==
(5π/3) r

∼1.
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19.5.4 Properties of rotation matrices

BecauseR
==

(α) represents a geometric operation, we should be able to use the geometric results

to predict properties of rotation matrices.

1. Inverses: What is R
==

−1 (α)?

Geometrically, if we rotate a vector by α and then by −α, we get back to where we
started, i.e.

first we get r
∼2 = R

==
(α) r

∼1,

then r
∼3 = R

==
(−α) r

∼2 = R
==

(−α)R
==

(α) r
∼1,

so that r
∼3 = r

∼1.

This suggests that:

The inverse of R
==

(α) is R
==

(−α): R
==

−1 (α) = R
==

(−α).

Proof: Remembering that cos(−α) = cos(α) and sin(−α) = − sin(α):

R
==

(−α)R
==

(α) =

[
cosα sinα
− sinα cosα

] [
cosα − sinα
sinα cosα

]

=

[
cos2 α + sin2 α − cosα sinα + sinα cosα
− sinα cosα + cosα sinα sin2 α + cos2 α

]

=

[
1 0
0 1

]
= I

==
.

Exercise: For the second part of the proof, show that R
==

(α)R
==

(−α) = I
==

.

2. Doing two rotations

If we rotate a vector by α1 then by α2, geometrically we get the same result as if we did
one single rotation by α1+α2. This suggests that

R
==

(α2)R
==

(α1) = R
==

(α1+α2).
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Proof: A simple application of trigonometric identities.

R
==

(α2)R
==

(α1) =

[
cosα2 − sinα2

sinα2 cosα2

] [
cosα1 − sinα1

sinα1 cosα1

]

=

[
cosα2 cosα1 − sinα2 sinα1 − cosα2 sinα1 − sinα2 cosα1

sinα2 cosα1 + cosα2 sinα1 − sinα2 sinα1 + cosα2 cosα1

]

=

[
cos(α1+α2) − sin(α1+α2)
sin(α1+α2) cos(α1+α2)

]
= R

==
(α1+α2).

Examples

(a) R
==

(π/3)R
==

(π/6) = R
==

(π/2).

Check:

R
==

(π/3)R
==

(π/6) =


1

2
−
√

3

2√
3

2

1

2



√

3

2
−1

2

1

2

√
3

2

 =

[
0 −1
1 0

]
= R

==
(π/2),

and similarly R
==

(π/6)R
==

(π/3) = R
==

(π/2).

(b) R
==

(−π/3)R
==

(π/3) = R
==

(0).

Check:

R
==

(−π/3)R
==

(π/3) =


1

2

√
3

2

−
√

3

2

1

2




1

2
−
√

3

2√
3

2

1

2


=

[
1 0
0 1

]
= R

==
(0) = I

==
,

verifying the fact that R
==

−1 (π/3) = R
==

(−π/3).

Exercises

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/4)R
==

(π/2) r
∼1 (b) R

==
(3π/4) r

∼1.
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3. Rotation matrices commute

Geometrically, if we rotate a vector by α1 and then by α2, we get just the same result
as rotating first by α2 and then by α1.

The first case is represented by R
==

(α2)R
==

(α1) r
∼

,

and the second by R
==

(α1)R
==

(α2) r
∼

.

This suggests that

Rotation matrices commute: R
==

(α1)R
==

(α2) = R
==

(α2)R
==

(α1).

Proof

As α1+α2 = α2+α1, then R
==

(α1+α2) = R
==

(α2+α1).

Therefore, from the result in 2 above, R
==

(α2)R
==

(α1) = R
==

(α1)R
==

(α2).

You can also prove it by direct calculation.

Exercises

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/4)R
==

(π/2) r
∼1 (b) R

==
(π/2)R

==
(π/4) r

∼1.

19.5.5 Mixing operations

We can now multiply together these various matrices to represent a string of transformations
of a vector. If we do four operations, for example, to get the final vector r

∼f
, then29

r
∼f

= T
==

4 T
==

3 T
==

2 T
==

1 r∼1.

We can use geometric thinking to decide properties of the matrix products.

Example

What is the algebra for

Take a vector v
∼1, rotate it by 45◦ and double its length to get a new vector v

∼2?

We now know that v
∼2 = T

==
v
∼1, where T

==
is the appropriate transformation matrix built up

using a rotation and a scaling:

T
==

= S
==

(2)R
==

(π/4) order!

=

[
2 0
0 2

]
1√
2

−1√
2

1√
2

1√
2

 =

[ √
2 −

√
2

√
2
√

2

]
.

29Work from right to left when doing multiple matrix operations on vectors.
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What could you say about the transformation R
==

(π/4) S
==

(2)?

The theory of linear transformations is developed in greater detail in many Linear Algebra
textbooks.

Exercises

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/2)M
==

x r∼1 (b) M
==

xR
==

(π/2) r
∼1 (c) R

==
(π/4) S

==
(−2) r

∼1.

19.5.6 Concluding remarks on matrices

1. We have now defined matrices and taken the first steps in developing their algebra.

2. Simultaneous linear equations are written as A
==
x
∼

= b
∼

.

3. The solution for square systems can be given by x
∼

= A
==

−1b
∼

; it is the existence of A
==

−1

that guarantees that A
==
x
∼

= b
∼

has a unique solution.

4. Matrices also tell us how to linearly transform one vector v
∼1 into another: v

∼2 = T
==
v
∼1.

This idea has applications to things like workforce and population evolution, and geo-
metric transformations.
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19.5.7 Problems

Solutions to the problems start on page 129.

1. (a) Calculate the effect of multiplying the vectors

[
1
0

]
,

[
0
1

]
,

[
1
1

]
and

[
−1

1

]
by

M
==

=

[
0 −1
−1 0

]
. Draw a diagram to show what happens in each case.

Check with your calculator.

(b) What geometric operation does multiplication by M
==

appear to represent? You

can check your deduction using the general formula given in Section 19.5.2.

(c) What is the effect of operating twice on a vector with M
==

, i.e. multiplying by M
==

2?

What is M
==

−1?

2. (a) What geometric operation does the matrix A
==

=

[ 1√
2
− 1√

2

1√
2

1√
2

]
represent?

(b) Calculate A
==

4 and A
==

8.

(c) How did you know geometrically those would be the answers?

(d) Use a geometric argument to find A
==

−1 and check by calculating A
==
A
==

−1.

(e) What geometric operation is represented by T
==

=

[ √
2 −

√
2√

2
√

2

]
?

3. If r
∼1 is transformed into r

∼2 by an operation represented by T
==

1 followed by an operation

represented by T
==

2, then r
∼2 = T

==
2T

==
1r∼1. What sequence of operations do A

==
M
==

and M
==
A
==

represent, if M
==

and A
==

are the matrices in Questions 1 and 2?

Draw a diagram to show what happens to the vector r
∼

= i
∼

+ j
∼

in each case.

Check with your calculator.

So do we know A
==
M
==

= M
==
A
==

or A
==
M
==
6= M

==
A
==

? Why?

4. Find the determinant of the general rotation matrix

R
==

(α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
.
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19.5.8 Solutions to exercises

In the TRANSFRM program, vector r
∼1 is stored in matrix [E] and displayed, with label and

norm, in blue at the top left of the screen. The transformed vectors, label and norm are in
black.

Exercises page 115

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) S
==

(2) r
∼1

(b) S
==

(−1) r
∼1

(c) S
==

(−2) r
∼1
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Exercises page 117

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) M
==

x r∼1

(b) M
==

y r∼1

(c) M
==

x↔y r∼1

(d) reflect r
∼1 in the line y=−x.
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Exercises page 119

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/4) r
∼1

(b) R
==

(−π/3) r
∼1

(c) R
==

(3π/2) r
∼1

(d) R
==

(5π/3) r
∼1.
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Exercises page 121

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/4)R
==

(π/2) r
∼1

(b) R
==

(π/2)R
==

(π/4) r
∼1

Exercises page 122

Use your calculator to generate the following vectors, given r
∼1 =

[
2
1

]
:

(a) R
==

(π/2)M
==

x r∼1

(b) M
==

xR
==

(π/2) r
∼1.
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(c) R
==

(π/4) S
==

(−2) r
∼1

19.5.9 Solutions to problems

1. (a) Calculate the effect of multiplying the vectors

[
1
0

]
,

[
0
1

]
,

[
1
1

]
and

[
−1

1

]
by

M
==

=

[
0 −1
−1 0

]
. Draw a diagram to show what happens in each case.

M
==

[
1
0

]
=

[
0
−1

]

M
==

[
0
1

]
=

[
−1

0

]

M
==

[
1
1

]
=

[
−1
−1

]

M
==

[
−1

1

]
=

[
−1

1

]

(b) What geometric operation does multiplication by M
==

appear to represent?

Reflection in the line y=−x.

129



19.5 Linear Transformations 19 MATRIX AND VECTOR OPERATIONS

(c) What is the effect of operating twice on a vector with M
==

, i.e. multiplying by M
==

2?

What is M
==

−1?

Geometrically, operating twice with M
==

gets back to the original vector.

Algebraically therefore, M
==

2 = I
==

and so M
==

−1 =M
==

. Check by calculating M
==

2.

2. (a) What geometric operation does the matrix A
==

=

[ 1√
2
− 1√

2

1√
2

1√
2

]
represent?

Comparing A
==

with the general form of the rotation matrix in the Notes, we see

that cos(α) = sin(α) = 1/
√

2, so that A
==

represents a rotation of 45◦ or π/4 radians

in the anti-clockwise direction, i.e. A
==

= R
==

(π/4).

(b) Calculate A
==

4 and A
==

8.

A
==

4 =
(
A
==

2
)2

=

[
0 −1

1 0

]2

=

[
−1 0

0 −1

]
.

A
==

8 =
(
A
==

4
)2

=

[
−1 0

0 −1

]2

=

[
1 0

0 1

]
= I

==
.

(c) How did you know geometrically those would be the answers?

A
==

4 represents 4 rotations by π/4, i.e. a rotation by π:

A
==

4 = R
==

(π) =

[
−1 0

0 −1

]
.

A
==

8 represents 8 rotations by π/4, i.e. a rotation by 2π:

A
==

8 = R
==

(2π) =

[
1 0

0 1

]
= I

==
.

(d) Use a geometric argument to find A
==

−1 and check by calculating A
==
A
==

−1.

A
==

−1 will represent a rotation by −π/4, so that A
==

−1 =

[ 1√
2

1√
2

− 1√
2

1√
2

]
.

A
==
A
==

−1 =

[ 1√
2
− 1√

2

1√
2

1√
2

][ 1√
2

1√
2

− 1√
2

1√
2

]
=

[
1 0

0 1

]
= I

==
.

(e) What geometric operation is represented by T
==

=

[ √
2 −

√
2√

2
√

2

]
?

T
==

= 2A
==

= 2R
==

(π/4), so it represents a rotation by π/4 and doubling the length of

the vector.
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3. If r
∼1 is transformed into r

∼2 by an operation represented by T
==

1 followed by an operation

represented by T
==

2, then r
∼2 = T

==
2T

==
1r∼1. What sequence of operations do A

==
M
==

and M
==
A
==

represent, if M
==

and A
==

are the matrices in Questions 1 and 2?

Draw a diagram to show what happens to the vector r
∼

= i
∼

+ j
∼

in each case.

A
==
M
==
r
∼

M
==
A
==
r
∼

So do we know A
==
M
==

= M
==
A
==

or A
==
M
==
6= M

==
A
==

? Why?

A
==
M
==

represents a reflection in the line y = −x followed by a rotation by 45◦.

M
==
A
==

represents a rotation by 45◦ followed by a reflection in the line y = −x.

Geometrically, A
==
M
==

and M
==
A
==

operating on r
∼

= i
∼

+ j
∼

produce different vectors, so that

A
==
M
==
6= M

==
A
==

.

If you check, you will find

A
==
M
==

=

[ 1√
2
− 1√

2

− 1√
2
− 1√

2

]
M
==
A
==

=

[ − 1√
2
− 1√

2

− 1√
2

1√
2

]
.

4. Find the determinant of the general rotation matrix R
==

(α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
.

detR
==

(α) = det

[
cos(α) − sin(α)

sin(α) cos(α)

]
= cos2(α) + sin2(α) = 1.

All rotation matrices have a determinant of 1. This corresponds to the fact that they
do not change the length of a vector (they have a scaling factor of 1).
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19.6 Eigenvalues and eigenvectors

19.6.1 Theory

Given an n×n matrix A
==

, the eigenvalues of A
==

are the constants λ and the eigenvectors of A
==

the corresponding (non-zero) n-dimensional vectors v
∼

(n×1 matrices) satisfying the equation

A
==
v
∼

= λv
∼
.

The eigenvalues λ are the zeros or roots of the nth-degree characteristic polynomial

p(x) = det
(
A
==
−xI

==

)
,

where I
==

is the n×n identity matrix.

A nice way to find the eigenvalues on a TI-84/CE is graphically: set

Y1 = det
(
[A]−X identity(n)

)
,

the characteristic polynomial, where you have to put in a value for n, the dimension of [A],
and graph in the usual way with an appropriate window.

Use zero
(
in the calc menu

)
to find the zeros of the polynomial: these are the eigenvalues

λi, i = 1, 2, . . . .

To find the eigenvectors, we have to solve the homogeneous matrix equation(
A
==
−λi I

==

)
v
∼

= 0
∼

for each eigenvalue λi found above.

On the calculator, we do this by Gauss-Jordan elimination, either using the command rref on
the matrix A

==
− λi I

==
or using the GAUSS/GAUSSCE program with A

==
− λi I

==
stored in matrix

[A].

19.6.2 Example

Find the eigenvalues and corresponding eigenvectors of

A
==

=

[
3 2
−1 0

]
.

This is a simple problem that can all be done easily by hand. We use it to illustrate the
calculator method, which can be used for more-complicated problems.

Eigenvalues

Put A
==

into matrix [A] in your calculator and set Y1 = det
(
[A]−X identity(2)

)
.

Start with Xmin =−5 and Xmax = 5. Press graph to plot the characteristic polynomial,

here a quadratic (because [A] is 2×2). It is clear that the zeros lie in the range 0< x< 3.
Change the window to magnify this region.
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window [0, 3, 1]×[−1, 2, 1]

Using zero in the calc menu gives the eigenvalues as λ1 =1 and λ2 =2 (figures above).

In this case, it is easy to show by hand that the characteristic polynomial is p(λ)=λ2−3λ+2,
with zeros 1 and 2.

Eigenvectors

λ1 =1: We have to find v
∼

=

[
x1
x2

]
, such that A

==
v
∼

=v
∼

or
(
A
==
− I

==

)
v
∼

= 0
∼

, i.e.

([
3 2
−1 0

]
−
[

1 0
0 1

])[
x1

x2

]
=

[
0
0

]
. (1)

To use the GAUSS/GAUSSCE program, put A
==
− I

==
in matrix [A].

However, we want to use A
==

, now in [A], for the second eigenvector too, so first store [A] in

[B].

Then store [B]−identity(2) in [A] and run GAUSS/GAUSSCE.

Alternatively execute the command ref
(
[B]−identity(2)

)
.

We should really use the augmented matrix here, with a third column of 0s from the right-
hand side of Eq. (1), but these remain 0 in the Gauss elimination, so we just remember to put
them back in at the end.

The reduced row-echelon form of A
==
− I

==
, with the third column of 0s now back in, is[

1 1 0
0 0 0

]
.

Note that the bottom row is all zeros.

There must be at least one row of zeros (the bottom row(s) after Gauss-Jordan or Gauss
elimination) in all eigenvector problems because there is always an infinite number of solutions
to the eigenvector equations, Eq. (1) here.

Eigenvalues are only defined to an arbitrary multiplicative constant.
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The corresponding matrix equation is[
1 1
0 0

] [
x1

x2

]
=

[
0
0

]
.

The bottom row tells us that x2 is arbitrary, so we set x2 = t, where t is any non-zero number.
The top row tells us that x1+x2 = 0, so that x1 = −x2 = −t.
The eigenvector v

∼1 corresponding to λ1 =1 is therefore

v
∼1 =

[
−t
t

]
= t

[
−1

1

]
.

The eigenvectors are arbitrary (non-zero30) multiples of the vector

[
−1

1

]
.

We usually say that this vector is the eigenvector, with the understanding that all non-zero
multiples of it are also eigenvectors.

Check:
A
==
v
∼1 =

[
3 2
−1 0

] [
−1

1

]
=

[
−1

1

]
= v
∼1.

λ2 =2: We have to solve A
==
v
∼

=2v
∼

or
(
A
==
−2I

==

)
v
∼

= 0
∼

for v
∼

.

Store [B]−2 identity(2) in [A] and run GAUSS/GAUSSCE.

Alternatively execute ref
(
[B]−2 identity(2)

)
.

Both give the reduced row-echelon form of A
==
−2I

==
, with the third column of 0s back in, as[

1 2 0
0 0 0

]
.

Therefore, x2 = t, where t is any number, and x1+2x2 =0, so that x1 =−2x2 =−2t.

The eigenvector v
∼2 corresponding to λ2 =2 is therefore

v
∼2 =

[
−2t
t

]
= t

[
−2

1

]
.

The eigenvector is an arbitrary (non-zero) multiple of the vector

[
−2

1

]
.

Check that A
==
v
∼2 =2v

∼2.

30If t=0, we obtain a zero vector, which, by definition, cannot be an eigenvector.
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19.6.3 EIGENV5/EIGENV5CE — finds real eigenvalues and eigenvectors

The EIGENV5/EIGENV5CE program31 combines plotting the characteristic polynomial, a root
finder to find the eigenvalues and the GAUSS/GAUSSCE program to find the eigenvectors of
the n×n matrix [A], all semi-automatically.

The description below is rather long but the process is relatively quick to carry out once
you’ve had some practice.

Example

Find the eigenvectors and eigenvalues of

A
==

=

 1 2 0
2 1 0
0 1 2

 .
1. Store A

==
(here 3×3) in matrix [A] using matrix EDIT.

2. Run the EIGENV5/EIGENV5CE program. Choose FIND THE EIGENVALUES.

This graphs the characteristic polynomial, whose zeros give the real eigenvalues, using
a window [−10, 10, 1]×[−5, 5, 1].

3. After the polynomial has been graphed, you have the option to have its zeros (the real

eigenvalues) found automatically or you can do it manually using zero in the calc menu.

4. If you choose Automatic mode, the calculator first asks if you want to change the X
scale (change Xmin/Xmax). The program only finds zeros that are on the screen.

If the zeros are not all on screen (how many should there be? )or if they are concentrated
in a small part of the X range,32 select YES. The calculator will ask you to change
Xmin/Xmax, then it will replot the graph.

Keep doing this step until all the zeros are on screen and spread out. Then select NO.

31available at canberramaths.org.au under Resources
32The zero finder works along the graph pixel by pixel until it finds a sign change in the function between

two adjacent pixels. If the zeros are very concentrated, there may be more than one zero in a pixel. In this
case, at least one of these zeros may not be found or the same one may be found twice. It’s best to choose
Xmin/Xmax so that the zeros are spread out as far as possible ON THE SCREEN.
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5. The calculator will find (approximations to) the zeros, place a small square at the
relevant point on the graph and list on-screen the values found, rounded to 3 decimal
places. The full (but still approximate) values for the zeros/eigenvalues are stored in
list L5 (smallest to largest) for later use in finding the eigenvectors.

For the example here, you should obtain the eigenvalues λ1 =−1, λ2 =2 and λ3 =3.

6. The program now asks if you want to find the eigenvectors. Answer YES.33

7. Choose which eigenvalue you want to use by selecting its index in L5: 1, 2, 3, · · · .

8. The program will return the eigenvalue and eigenvector (use the right arrow to scroll if
necessary). Alternatively it may return the message

Reduced row-echelon matrix needs interpreting.

This happens if the z component of the eigenvector is zero, if there is more than one
row of all zeros or if A

==
v
∼
6=λv

∼
(the program checks).

Rather than the program choose between one of several possibilities, it asks you to look
at the reduced row-echelon form of the augmented matrix and work out the eigenvector.

9. After it has calculated an eigenvector, the program asks whether you want to find further
eigenvectors. The last eigenvector is stored in matrix [B].

In our example, the eigenvectors corresponding to λ1 =−1, λ2 =2 and λ3 =3 are

v
∼1 =

 3
−3

1

 v
∼2 =

 0
0
1

 v
∼3 =

 1
1
1

 .

33but see Point 11.
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10. You can run EIGENV5/EIGENV5CE at any time to find the eigenvectors (choose FIND

THE EIGENVECTORS? at the start), provided the eigenvalues are still in list L5 and
the matrix in [A].

Alternatively you can store the eigenvalues in L5 manually
(

stat Edit
)
, run the program

and choose FIND THE EIGENVECTORS from the first menu.

The appropriate matrix has to be stored in matrix [A] of course.

11. Repeated eigenvalues show up as the graph of the characteristic equation touching, but
not crossing, the x axis. The root finder will therefore not pick them up.

If the x value (λ) where the graph touches the x axis is obvious from the graph, you
can insert it into L5 via the program. At Point 6 above, there is an additional prompt
allowing you to do this. You can then continue to run the program as normal.

The program may find an eigenvector, if there is only one, or else it will display the
reduced row-echelon form of the augmented matrix to allow you to work out the eigen-
vector(s).

If the x value is not obvious from the graph, you can use maximum or minimum in the
calc menu to find it. You will need to quit out of the program to do this. Then press

graph to replot the graph. Store the value in L5, after the eigenvalues the calculator

has already stored.

Then re-run the EIGENV5/EIGENV5CE program, choose FIND THE EIGENVECTORS

and put in the index of the eigenvalue you have just entered. If an eigenvalue is repeated,
it may have more than one associated eigenvector.

19.6.4 Exercises

1. Find, using the calculator (but not EIGENV5/EIGENV5CE), the eigenvectors and eigen-
values of the matrix

A
==

=

[
7 2
2 4

]
.

Check with EIGENV5/EIGENV5CE and verify that A
==
v
∼

=λv
∼

for each eigenvalue.

2. Show, using the calculator (but not EIGENV5/EIGENV5CE), that the eigenvalues of

A
==

=

 1 1 −2
−1 2 1

0 1 −1


are −1, 1 and 2, with corresponding eigenvectors 1

0
1

  3
2
1

  1
3
1

 .
3. Find, using the calculator (but not EIGENV5/EIGENV5CE), the eigenvectors and eigen-

values of the matrix

A
==

=

 1 2 0
2 1 0
0 1 2

 .
Check with EIGENV5/EIGENV5CE and verify that A

==
v
∼

=λv
∼

for each eigenvalue.
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19.6.5 Solutions

1. Find, using the calculator (but not EIGENV5/EIGENV5CE), the eigenvectors and eigen-
values of the matrix

A
==

=

[
7 2
2 4

]
.

Check with EIGENV5/EIGENV5CE and verify that A
==
v
∼

=λv
∼

for each eigenvalue.

Eigenvalues

Put the 2×2 matrix A
==

into matrix [A] in your calculator.

Set Y1 = det
(
[A]−X identity(2)

)
.

Start with zoom 6 . Press graph to plot the characteristic polynomial, a quadratic

here. It is clear that the zeros lie in the range 0<x<10.

window [0, 10, 1]×[−10, 10, 5]

Using zero in the calc menu gives the eigenvalues as λ1 =3 and λ2 =8.

PTO
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Eigenvectors

λ1 =3

Let v
∼1 =

[
x1
y1

]
. Then

(
A
==
−λI

==

)
v
∼1 =

(
A
==
−3I

==

)
v
∼1 =

[
4 2
2 1

] [
x1

y1

]
=

[
0
0

]
.

To use the GAUSS/GAUSSCE program, we need to put A
==
− 3I

==
in matrix [A]. As we

want to use A
==

, now in [A], for the second eigenvector, first store [A] in [B].

Then store [B]−identity(2) in [A] and run GAUSS/GAUSSCE.

We should really use the augmented matrix here with a third column of 0s; these remain
0 in the Gauss elimination, so we just remember to put them back in afterwards.

This gives the reduced row-echelon form of A
==
−3I

==
, with the third column of 0s back

in, as [
1 0.5 0
0 0 0

]
.

Note that the bottom row is all zeros. There must be at least one row of zeros (the
bottom row) in all eigenvector problems.

Therefore, y1 is a free variable. Set y1 = t ∈ R, t 6= 0.

The top row gives the equation x1+0.5y1 =0, so that x1 =−0.5y1 =−0.5t.

The solution is therefore y1 = t, x1 =−0.5t, where t is any non-zero real number.

Therefore, A
==

has an eigenvalue λ1 =3, with corresponding eigenvector

v
∼1 =

[
x1

y1

]
=

[
−0.5t
t

]
= t

[
−0.5

1

]
, t 6= 0 ∈ R.

Given that t is arbitrary, set s=−1
2
t, s 6=0 ∈ R, so that

v
∼1 = s

[
1
−2

]
.

Check your answer by verifying that A
==
v
∼1 =3v

∼1.

A
==
v
∼1 =

[
7 2
2 4

] [
1
−2

]
=

[
3
−6

]
= 3

[
1
−2

]
= 3v

∼1.
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λ2 =8

Let v
∼2 =

[
x2

y2

]
. Then

(
A
==
− λI

==

)
v
∼1 =

(
A
==
− 8I

==

)
v
∼1 =

[
−1 2

2 −4

] [
x2

y2

]
=

[
0
0

]
.

Gauss elimination on the augmented matrix:[
−1 2 0

2 −4 0

]
−→

[
1 −2 0
0 0 0

]
.

Therefore, y2 is a free variable. Set y2 = t 6= 0 ∈ R.

The top row gives the equation x2 − 2y2 = 0, so that x2 = 2y2 = 2t.

The solution is therefore y2 = t, x2 = 2t, where t is any non-zero real number.

Therefore, A
==

has an eigenvalue λ2 = 8, with corresponding eigenvector

v
∼2 =

[
x2

y2

]
=

[
2t
t

]
= t

[
2
1

]
, t 6= 0 ∈ R.

Check your answer by verifying that A
==
v
∼2 =8v

∼2.

A
==
v
∼2 =

[
7 2
2 4

] [
2
1

]
=

[
16
8

]
= 8

[
2
1

]
= 8v

∼2.

Note that we usually take t=1 when writing down the eigenvectors, knowing that any
non-zero multiple is also an eigenvector. However, sometimes we choose a value that
removes fractions in the eigenvector, as we did with s above.

Using EIGENV5/EIGENV5CE
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2. Show, using the calculator (but not EIGENV5/EIGENV5CE), that the eigenvalues of

A
==

=

 1 1 −2
−1 2 1

0 1 −1


are −1, 1 and 2, with corresponding eigenvectors 1

0
1

  3
2
1

  1
3
1

 .
Eigenvalues

Put the 3×3 matrix A
==

into matrix [A] in your calculator.

Set Y1 = det
(
[A]−X identity(3)

)
.

Start with Xmin =−5 and Xmax = 5. Press graph to plot the characteristic

polynomial, here a cubic. It is clear that the zeros lie in the range −2<x<3.

window [−5, 5, 1]×[−5, 5, 1]

Using zero in the calc menu gives the eigenvalues as λ1 =−1, λ2 =1 and λ3 =3.

Eigenvectors

λ1 = −1: We have to find v
∼1 =

 x1

x2

x3

, such that A
==
v
∼1 =−v

∼1 or
(
A
==

+ I
==

)
v
∼1 = 0

∼
,

i.e.  1 1 −2
−1 2 1

0 1 −1

+

 1 0 0
0 1 0
0 0 1

 x1

x2

x3

 =

 0
0
0

 .
To use the GAUSS/GAUSSCE program, we need to put A

==
+ I

==
in matrix [A]. As we

want to use A
==

, now in [A], for the second eigenvector, first store [A] in [B]. Then store

[B]+identity(3) in [A] and run GAUSS/GAUSSCE.
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This gives the reduced row-echelon form of A
==

+ I
==

, with the fourth column of 0s put

back in, as  1 0 −1 0
0 1 0 0
0 0 0 0

 .
Note again that the bottom row is all zeroes.

The bottom row tells us that x3 is arbitrary, so we set x3 = t, where t is any number.
The second row gives x2 =0. The top row tells us that x1−x3 =0, so that x1 =x3 = t.

The eigenvector v
∼1 corresponding to λ1 =−1 is therefore

v
∼1 =

 t
0
t

 = t

 1
0
1

 .
The eigenvectors are arbitrary (non-zero) multiples of the vector

 1
0
1

.

λ2 =1: We have to solve A
==
v
∼2 =v

∼2 or
(
A
==
− I

==

)
v
∼2 = 0

∼
for v

∼2.

Store [B]− identity(3) in [A] and run GAUSS/GAUSSCE. The reduced row-echelon form
of A

==
− I

==
, with the fourth column of 0s put back in, is 1 0 −3 0

0 1 −2 0
0 0 0 0

 .
Therefore, x3 = t, where t is any number. The second row gives the equation x2−2x3 =0,
so that x2 =2x2 =2t. The top row gives the equation x1−3x3 =0, so that x1 =3x3 =3t.

The eigenvector v
∼2 corresponding to λ2 =2 is therefore

v
∼2 =

 3t
2t
t

 = t

 3
2
1

 .

The eigenvectors are arbitrary (non-zero) multiples of the vector

 3
2
1

.
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λ3 =2: We have to solve A
==
v
∼3 =2v

∼3 or
(
A
==
−2I

==

)
v
∼3 = 0

∼
for v

∼3.

Store [B]−2 identity(3) in [A] and run GAUSS/GAUSSCE. The row-equivalent reduced
row-echelon form of A

==
−2I

==
, with the fourth column of 0s put back in, is 1 0 −1 0

0 1 −3 0
0 0 0 0

 .
Therefore, x3 = t, where t is any number. The second row gives the equation x2−3x3 =0,
so that x2 =3x2 =3t. The top row gives the equation x1−x3 =0, so that x1 =x3 = t.

The eigenvector v
∼3 corresponding to λ3 =2 is therefore

v
∼3 =

 t
3t
t

 = t

 1
3
1

 .

The eigenvectors are arbitrary (non-zero) multiples of the vector

 1
3
1

.

3. Find, using the calculator (but not EIGENV5/EIGENV5CE), the eigenvectors and eigen-
values of the matrix

A
==

=

 1 2 0
2 1 0
0 1 2

 .
Check with EIGENV5/EIGENV5CE and verify that A

==
v
∼

=λv
∼

for all the eigenvalues.

Eigenvalues

Put the 3×3 matrix A
==

into matrix [A] in your calculator.

Set Y1 = det
(
[A]−X identity(3)

)
.

Start with Xmin =−5 and Xmax = 5. Press graph to plot the characteristic polyno-
mial, here a cubic.

window [−5, 5, 1]×[−7, 5,−1]

Using zero in the calc menu gives the eigenvalues as λ1 =−1, λ2 =2 and λ3 =3.
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Eigenvectors

λ1 =−1: We have to solve (A
==

+ I
==

)v
∼1 =0

∼
for v

∼1.

Let v
∼1 =

 x
y
z

. We need to find the components x, y and z. Then,

(
A
==

+ I
==

)
v
∼1 =

 2 2 0
2 2 0
0 1 3

 x
y
z

 =

 0
0
0

 .
The augmented matrix for this problem is 3×4, with the 4th column all zeros.

To use the GAUSS/GAUSSCE program, we need to put A
==

+ I
==

in matrix [A]. Store [A]

in [B], then store [B]+identity(3) in [A] and run GAUSS/GAUSSCE.

This gives the reduced row-echelon form of A
==

+ I
==

, with the 4th column of 0s back in,
as  1 1 0 0

0 1 3 0
0 0 0 0

 ,
(note the bottom row of zeros), with corresponding equations

x+ y = 0

y + 3z = 0.

Back substitution gives z= t, y=−3t, x=3t.

Therefore the required eigenvector is v
∼1 = t

 3
−3

1

, where t 6= 0 ∈ R.

Check that A
==
v
∼1 =−v

∼1.

λ2 = 2

Let v
∼2 =

 x
y
z

. Solve
(
A
==
−2I

==

)
v
∼2 =

 −1 2 0
2 −1 0
0 1 0

 x
y
z

 =

 0
0
0

.

Gauss elimination  −1 2 0 0
2 −1 0 0
0 1 0 0

 −→
 1 −2 0 0

0 1 0 0
0 0 0 0

 ,
corresponding to equations

x − 2y = 0

y = 0,

with free variable z and solution (back substitution) z= t, y=0, x=0, with t 6= 0 ∈ R.

Therefore, the required eigenvector is v
∼2 =

 0
0
1

.

Check that A
==
v
∼2 =2v

∼2.

144



19.6 Eigenvalues and eigenvectors 19 MATRIX AND VECTOR OPERATIONS

λ3 = 3

Let v
∼3 =

 x
y
z

. Solve
(
A
==
−3I

==

)
v
∼3 =

 −2 2 0
2 −2 0
0 1 −1

 x
y
z

 =

 0
0
0

.

Gauss elimination  −2 2 0 0
0 0 0 0
0 1 −1 0

 −→
 1 −1 0 0

0 1 −1 0
0 0 0 0

 ,
corresponding to equations

x − y = 0

y − z = 0,

with free variable z and solution (back substitution) z= t, y= t, x= t, with t 6= 0 ∈ R.

Therefore, the required eigenvector is v
∼3 =

 1
1
1

.

Check that A
==
v
∼3 =3v

∼3.

Using EIGENV5/EIGENV5CE
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19.7 Vector operations

19.7.1 Introduction

All the operations here, except one, are based on the dot or scalar product. This can be
evaluated with the vectors stored as (column) matrices or as lists. If a

∼
and b

∼
are two vectors

of the same dimension n, they can be represented on the calculator by the n×1 column
matrices [A] and [B], say, or the components stored in lists, say, L1 and L2. Then the dot or
scalar product is given by the matrix multiplication

a
∼
· b
∼

= [A]T[B],

where the superscript T denotes the transpose, or by the list operation

a
∼
· b
∼

= sum(L1 L2).

The list product L1 L2 produces a list whose components are the products of the corresponding
components of the two lists; summing these then gives the scalar product.

Note that the scalar product is defined for vectors of any length, i.e. a
∼
, b
∼
∈ Rn; this is handled

by both methods on the calculator.

The one exception mentioned above is the cross or vector product, which is only defined for
three-dimensional vectors.

The list method is a little easier to use, so we continue with it. The operations described
below are contained in the VECTOR/VECTORCE program,34 which prompts for the vectors,
then does the calculations.

19.7.2 Operations

Use stat Edit to input the vectors or enclose them in { }, with commas, and store them to
the relevant list.

Assume vector a
∼

is in list L1, vector b
∼

in list L2. sum is in the list MATH menu.

Scalar multiplication (Rn)

If c is a constant, the scalar multiple ca
∼

= cL1.

Scalar or dot product (Rn)

a
∼
· b
∼

= sum(L1 L2).

Vector or cross product (R3 only)

a
∼
×b
∼

is a vector, given in terms of the entries in the two lists by

a
∼
× b
∼

=
(
L1(2) L2(3)−L1(3) L2(2), L1(3) L2(1)−L1(1) L2(3), L1(1) L2(2)−L1(2) L2(1)

)
.

34available at canberramaths.org.au under Resources
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Norm (Rn)

norm a
∼

=
√(
a
∼
· a
∼

)
=
√(

sum(L1 L1)
)

Projection (Rn)

The (vector) projection of b
∼

onto a
∼

is given by

proja
∼
b
∼

=
a
∼
· b
∼

a
∼
· a
∼

a
∼

= sum(L1 L2)/sum(L1 L2) L2.

Angle between vectors (Rn)

The angle θ between vectors a
∼

and b
∼

is given by

cos(θ) =
a
∼
· b
∼√(

a
∼
· a
∼

)√(
b
∼
· b
∼

) = sum(L1 L2)
/√(

sum(L1 L1)
)/√(

sum(L2 L2)
)
.

19.7.3 Exercises

1. Given vectors a
∼

=(1, 2, 3) and b
∼

=(−1, 0, 3), find

(a) a
∼
· b
∼

Answer : 8.

(b) a
∼
× b
∼

Answer : (6, 6,−2).

(c) norm b
∼

Answer :
√

10.

(d) proja
∼
b
∼

Answer :

(
4

7
,

8

7
,
12

7

)
.

(e) the angle between a
∼

and b
∼

in radians and degrees. Answer : 0.828 rad; 47.5◦.

2. Given vectors a
∼

=

(
1

2
,

1

3
,

1

5
,

1

7

)
and b

∼
=

(
2

3
,

3

5
,

2

7
, −1

)
, find

(a) a
∼
· b
∼

Answer :
47

105
.

(b) norm b
∼

Answer : 1.373 (to 3DP).

(c) proja
∼
b
∼

Answer :
(
0.531, 0.354, 0.212, 0.152

)
(to 3DP).

(d) the angle between a
∼

and b
∼

in radians and degrees. Answer : 1.05 rad; 59.9◦.
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20 Population Modelling 3: Matrix Models

20.1 Population-projection matrices

In 2005, the Australian Government’s Productivity Commission released its research report,
Economic Implications of an Aging Australia35. Planners were concerned that the proportion
of older people was increasing, which would eventually put pressure on social services like
health care. There would also be fewer people in the working population to pay for the
required services and pensions. The distribution of the population with respect to age is
changing.

To describe the population, we can divide it into age groups, for example into five-year groups,
0–5 years, 6–10 years, etc. It is also useful to split the population into males and females.

Here are some data taken from the Productivity Report, with the Australian population in
one-year age groups and split into males and females.

From pyramid to coffin. Changing age structure of the Australian population, 1925–2045.

Some of the results are measured data (1925 and 2000), while those for 2045 are clearly
predictions. The trend is very clear, with a predominance of young people in 1925 (after
World War 1) changing to a more even distribution in 2000 up to the age of the ‘baby
boomers’ (40–55 years).

We follow this approach in the examples in this section: splitting a population into age classes
and seeing how these classes evolve over time.

35www.pc.gov.au/inquiries/completed/ageing/report

148



20.1 Population-projection matrices 20 POPULATION MODELLING 3

20.1.1 Simple model

Divide a population into numbers of young yn and numbers of adults an.

We define the population vector p
∼
n =

[
yn
an

]
.

We now need the rules that tell us how the population evolves each cycle, that is each time
step. From observation, we find that each cycle on average:

� 48% of adults produce young;

� all young mature into adults;

� 20% of adults die.

This translates into the equations (do it)

yn+1 = 0yn + 0.48an = 0yn + 0.48an

an+1 = 1yn + (1−0.2)an = 1yn + 0.8an.

Written in matrix form, we have[
yn+1

an+1

]
=

[
0 0.48
1 0.8

] [
yn
an

]
,

or p
∼
n+1 = T

==
pn.

The transition matrix T
==

=

[
0 0.48
1 0.8

]
tells how the population evolves.

We explore this problem using a numerical experiment (calculators ready).

Suppose that at the start of Year 1 we have 100 young and 100 adults.

Then, in Year 2, p
∼

2 = T
==
p
∼

1 =

[
0 0.48
1 0.8

] [
100
100

]
=

[
48
180

]
.

Doing this calculation repeatedly gives the population evolution from year to year:[
100
100

]
→
[

48
180

]
→
[

86.4
192

]
→
[

92.2
240

]
→
[

115.2
284.2

]
→ · · ·

Populations of adults (top curve) and young over 10 cycles.

window [0, 10, 1]×[0, 1000, 100]

149



20.1 Population-projection matrices 20 POPULATION MODELLING 3

The pattern here is not obvious, although the curves eventually look exponential. In fact you
will find that, after enough cycles and no matter how we start off,

� the number of young is 0.4 times the number of adults;

� the overall population, young + adults, increases by 20% each year.

That is, eventually, the population vector behaves like

· · · →
[

0.4x
x

]
→ 1.2

[
0.4x
x

]
→ (1.2)2

[
0.4x
x

]
→ (1.2)3

[
0.4x
x

]
→ · · · ,

and only the value of x depends on how we start off.

We have a steady-state distribution in the population (relative numbers of young and adults),
but the overall population is increasing by 20% each cycle, i.e.

T
==
p
∼
ss = 1.2p

∼
ss, (1)

where p
∼
ss =

[
0.4
1

]
or any multiple of it.

We come to a set of questions.

1. Why is the increase factor equal to 1.2?

2. Where does the 40 : 100 ratio for young : old come from?

3. How could we manage this population? For example, how could we stabilise it so that
the 1.2 became 1? What would that do to the distribution of young and adults?
Can we sort out all of this without going through the repeated-multiplications method?

The answers to these three questions come from considering the eigenvalues and eigenvectors
of T

==
: Eq. (1) is an eigenvalue equation for T

==
.

The eigenvalues of T
==

are 1.2 and −0.4. Clearly, −0.4 is not physically relevant. The dominant

eigenvalue 1.2 gives the growth rate of the population, with corresponding eigenvector p
∼
ss.

To stabilise the population, we would have to change the non-zero elements of T
==

so that the

dominant eigenvalue 1.2 became 1.

The corresponding eigenvector would then give the relative numbers of young and adults.

The eigenvalue method gives us the means to do these calculations without going through
the repeated-multiplications method although the graphics generated by, for example, the
POPMX4/POPMX4CE program are a quick way to see the overall picture.

Summary (general result)

1. The dominant eigenvalue of the transition matrix T
==

gives the rate of overall population

growth (or decline).

2. The corresponding eigenvector gives the steady-state distribution of the population be-
tween the sub-classes.
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20.1.2 Leslie matrices

The Leslie matrix is a discrete, age-structured model of population growth that is very popular
in population ecology. It was invented by and named after Patrick H. Leslie.

We divide a population into a number of classes — here we shall assume three classes, referring
to three age groups, young, adults and seniors, with respective numbers y, a and s. The
population is then described by the vector or 3×1 column matrix

v
∼

=

 y
a
s

 .
A 3×3 transition matrix T

==
tells us how the population evolves. For example, if the population

to start with is

v
∼0 =

 y0

a0

s0

 ,
after one cycle it is

v
∼1 =

 y1

a1

s1

 = T
==

 y0

a0

s0

 = T
==
v
∼0.

In problems leading to a Leslie transition matrix:

� in each cycle, members of the other classes produce a certain number of new young in
Class 1;

� a certain fraction of each class survives to move into the next class; the rest die;

� all members of the top class die.

This leads to a Leslie matrix T
==

that is zero everywhere except possibly:

� along the top row after the first element — the birth rates for each class;

� in the elements along the diagonal parallel to and just below the main diagonal — the
survival rates for each class.

0 ∗ ∗ ∗ ∗ · · · ∗ ∗
∗ 0 0 0 0 · · · 0 0
0 ∗ 0 0 0 · · · 0 0
0 0 ∗ 0 0 · · · 0 0
0 0 0 ∗ 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · ∗ 0


Leslie discovered these matrices in the 1940s when he pioneered this way of exploring how
populations can develop. He taught himself matrix algebra while he was in hospital with TB.
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Exercise: Leslie matrices and beetles 1 Solutions are in Section 20.3.

(a) During each cycle, each adult beetle produces on average 2.75 young and each senior
beetle produces on average 2.5 young; one quarter of the young beetles survive to become
adults; and one half of the adult beetles survive to become seniors. In a Leslie-matrix
problem, all the seniors die.

Find the Leslie transition matrix T
==

.

Good strategy: Write out the linear equations for y1, a1 and s1 in terms of y0, a0 and s0,
and convert to matrix form.

y1 = ?y0 + ?a0 + ?s0

a1 = ?y0 + ?a0 + ?s0

s1 = ?y0 + ?a0 + ?s0

(b) If we start with 40 young and no adults or seniors, show that after one cycle

v
∼1 =

 y1

a1

s1

 =

 0
10
0

 .
You should have entered T

==
into [A], the initial v

∼
into [B] and evaluated [A][B].

(c) Multiply repeatedly by T
==

, and record v
∼

and the total population P =y+a+s after 11,

12 and 13 cycles.36

You might like to plot the populations too to help with the questions.

What happens to the total population? to the ratios of the numbers in the different
classes?

Exercise: Leslie matrices and beetles 2

In the previous exercise we found that a certain population of beetles was described by the
equations v

∼n+1 = T
==
v
∼n

, where

T
==

=

 0 2.75 2.5
0.25 0 0

0 0.5 0

 .
An orchardist has beetles in her trees and knows the beetle population evolves as described
by this transition matrix,

At the start of last year she employed a pest-control company to reduce the beetle numbers;
they did that (they claim) by using a spray that killed off the senior beetles.

This year the orchardist did a survey over 50 trees and found 800 young beetles, 200 adults
and 100 seniors.

She now says the pest-control company failed and she wants her money back.

Does she have a case?
36the POP/POPCE program (Section 20.2) helps here
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20.1.3 Populations and oscillations

Workers other than Leslie had independently used matrix algebra in population models. The
first was Harro Bernardelli, who published a paper in 1941 in the Journal of the Burma
Research Society with the title Population Waves.

Bernardelli’s paper was unusual in focussing not on the eventual stability of the population
structure, but on intrinsic oscillations in the population structure. He had observed oscilla-
tions in the age structure of the Burmese population between 1901 and 1931.

As an abstract model for such oscillations, he proposed a matrix model for the evolution of
the population with

T
==

=

 0 0 8
0.5 0 0
0 0.25 0

 ,
and showed by numerical calculations that this gave rise to apparently permanent oscillations
in the age structure.

Exercise

(a) Record the total population P at each cycle for 12 cycles using Bernardelli’s matrix T
==

with v
∼0 =

 1
0.01
0.01

, the initial populations in three age groupings in millions.

Do this by hand or using POP/POPCE (Section 20.2).

Plot P versus cycle number, joining up the points with straight lines (see Section 20.2).

Discuss your findings.

(b) Repeat (a) using T
==

=

 0 0 5
0.7 0 0
0 0.5 0

.

Describe your results in words. Explain in terms of the entries in T
==

.

Solutions are in Section 20.3.

20.1.4 Exercise: A bank workforce

The manager of a bank has in his workforce tn trainee tellers and sn senior tellers at the start
of Year n. At the end of each year:

— the number of new trainee tellers recruited is set equal to the number of senior tellers
in the bank that year;

— 36% of trainee tellers graduate to become seniors; 24% are allowed to break their contract
and leave the bank, while the rest remain as trainees;

— 40% of senior tellers are promoted to higher positions; 20% of senior tellers leave; the
remainder stay as senior tellers.

(a) Write down the equations for the teller workforce at the start of Year n+1 in terms of
the workforce at the start of Year n.
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(b) Convert the equations in (a) to matrix form.

(c) If there are 125 trainees and 125 senior tellers at the start of Year 1, how many of each
are there at the start of Year 3?

(d) Is there a steady state here? If so, what is it?

(e) Find the eigenvalues and eigenvectors of the transition matrix and reconcile them with
your answer in (d).

Solutions are in Section 20.3.

20.1.5 Exercise: Disease modelling

A population of mice in a medical experiment at the beginning of Week n is specified by the
number hn of healthy mice and the number in of mice infected by the virus under investigation.

During each week:

40% of the healthy mice contract the virus;

30% of the infected mice recover to become healthy again;

50% of the infected mice die.

(a) Find the linear equations that give the number of healthy mice hn+1 and the number of
infected mice in+1 at the beginning of Week n+1 in terms of the numbers hn, in at the
beginning of Week n.

(b) Define the mouse population vector v
∼n

=

[
hn
in

]
and write your equations in matrix

form.

(c) If the experiment starts at the beginning of Week 1 with 1000 healthy mice, find the
populations of healthy and infected mice at the beginning of Week 2.

(d) Find the respective populations at the beginning of Week 8.

(e) Given 1000 mice to start with, how many would have to be healthy and how many
infected to start with the ‘steady state’?

What is the form of ‘steady state’ here?

What do you predict for the long-term future of this population?

Solutions are in Section 20.3.
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20.1.6 Exercise: Killer whales

Based on a Year-12 project set by Margaret McLaughlan of St Francis Xavier College.

Teachers (and students) may find the programs WHALES/WHALESCE (Section 20.2) useful
(but not essential) for experimenting with the population-projection matrix.

Leslie matrices are just a special case of a more general population-projection matrix. In the
more general case, animals in a class may remain in that class for more than one cycle. The
probability that an animal remains in a particular class for any given cycle is an element on
the diagonal of the matrix, immediately above the entry in the Leslie matrix, which gives the
probability of moving to the next class in any given cycle.

Therefore we have a matrix whose elements along the top row give the fecundity or birth rate
per animal per cycle for each class, whose diagonal elements give the probability of an animal
remaining in a particular class in any cycle and whose elements below the diagonal give the
probability of an animal moving to the next class in any cycle. The fact that the latter two
numbers in any column do not add up to 1 means that some animals in each class die each
cycle.

For female killer whales, we have four classes — yearlings (individuals in the first year of life),
juveniles (past the first year, but not mature), mature females and post-reproductive females.
The mean period in the juvenile stage is 13.4 years and in the mature stage 22.1 years, with
an overall lifetime of 80–90 years. Details in Brault and Caswell, Pod-specific demography of
killer whales, Ecology 74, 1444–1454 (1993).

The population-projection matrix for female killer whales is given below. The time for one
cycle is one year.

T
==

=


0 0.0043 0.1138 0

0.9775 0.9111 0 0
0 0.0736 0.9534 0
0 0 0.0452 0.9804


1. A project you are involved in wants to re-introduce killer whales into an area of ocean

from which they have disappeared. The project leader wants to know what is the best
combination of juveniles and mature females to re-introduce, assuming an overall total
of 50 (plus an appropriate number of adult males). You decide to model three options
over 40 cycles (years).

(a) 50 female juveniles.

(b) 40 female juveniles and 10 mature females.

(c) 50 mature females.

What happens to the different population classes of female killer whales over time in
each of these options (according to this model)?
What is the best strategy for re-establishing the killer-whale population?

Hint : (manual method) If T
==

is in the 4×4 matrix [A] and the initial population v
∼0 in

the 4×1 matrix [B], executing the command [A] [B] → [B], then repeatedly pressing
enter will generate successive population vectors v

∼1, v
∼2, v

∼3, etc.37

The symbol → stands for the sto key.

37You could also run POP/POPCE (Section 20.2), repeatedly pressing enter , to give the total population
directly.
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2. Does the trend in the total population depend on which option you choose?

3. The value of 0.1138 in the top row of T
==

gives the number of live births per mature

female per cycle (year).

To what value could this birth rate fall before the total population starts to decrease?

This birth rate is clearly important for the overall survival of killer whales.

Hint : See the discussion in Section 20.2 on the eigenvalue λp of the matrix T
==

.

4. How sensitive is the population to the survival rates of yearlings (0.9775), juveniles
(0.9111), mature females (0.9534) and post-reproductive females (0.9804)?

You might like to quantify your answers here by determining what percentage decrease
in each rate is needed to stop the population growing.

Do your answers make sense?

The WHALES/WHALESCE program (Section 20.2) does these calculations and also plots the
populations.

Solution are in Section 20.3.

PTO
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20.1.7 Exercise: Age distribution of trees in a forest

The difference-equation version of this problem can be found in Population Modelling 2 in
Volume 2 of this book.

The population of trees in a forest is split into four age groups: bn is the number of baby
trees (0 – 15 years old) at time-point n; yn the number of young trees (16 – 30 years); mn

middle-aged trees (31 – 45 years old) ; and on old trees (more than 45 years old).

The time step for our difference equations is 15 years.

In order to simplify the model we make the following assumptions:

A. a certain percentage of trees in each age group dies in each time interval;

B. surviving trees age into the next age group each time step; old trees remain old trees
(or die);

C. dead trees are replaced by an equal number of baby trees.

Define α, β, γ, δ as the fraction of dead trees in the respective age groups in each time interval.
Then, the difference-equation model is

bn+1 = αbn + βyn + γmn + δon Assumption C (2)

yn+1 = (1−α)bn Assumptions A, B (3)

mn+1 = (1−β)yn Assumptions A, B (4)

on+1 = (1−γ)mn + (1−δ)on Assumptions A, B. (5)

1. If the population of trees in time interval n is N = bn + yn + mn + on, show that
the population stays the same size after one more time step, and so by induction the
population of trees is a constant N .

2. Equations (1) – (4) are linear in the dependent variables so that matrices are a way of
solving the problem. Define v

∼n
=(bn, yn,mn, on)T (a column vector) and write down the

matrix T
==

that you would use in the matrix model v
∼n+1 =T

==
v
∼n

of these equations.

3. Take α= 0.2, β = 0.5, γ = 0.3, δ = 0.2 and N = 1000. Write down the matrix T
==

with

these values.

4. Four initial conditions are needed in order to fully solve this matrix equation. Assume
all baby trees initially.

Run the matrix model in Problems 2 and 3 through 10 cycles (150 years). Alternatively,
you could use the program POPMX4/POPMX4CE (Section 20.2) to calculate and plot
your results. Do the individual populations appear to be stabilising?

5. Use the EIGENV5/EIGNV5CE program to find the eigenvalues of T
==

.

6. Find the eigenvector of T
==

corresponding to λ= 1 (explain why we use this value) and

relate this to the behaviour of the model that you found in Problem 4.

Solutions are in Section 20.3.
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20.1.8 The population problem with harvesting

We return to a population problem similar to that in Section 20.1.1 but now we investigate
how harvesting can be included. Theory tells us the ‘exact’ solution but graphics allow us to
explore around that solution.

A population comprises yn young and an adults at the start of Year n. Each year, 90% of the
young survive to become adults, 90% of the adults have young and 20% of adults die. Thus,[

yn+1

an+1

]
= T

==

[
yn
an

]
=

[
0 0.9

0.9 0.8

] [
yn
an

]
.

(
Check
that !

)
We now wish to harvest a fraction h of the adults each year but maintain a stable population.

Note that the same mathematics works if we are ‘harvesting’ some adults from a captive
population of rare animals to release back into the wild.

The adult ‘death’ rate becomes 0.2+h, so that T
==

becomes

[
0 0.9

0.9 0.8− h

]
.

If we now choose h so that T
==

has an eigenvalue λ1 =1, and also choose for the initial relative

distribution of young and old the corresponding eigenvector v
∼1, we know we will have a

steady-state situation.

For the eigenvalues, |T
==
−λI

==
| =

∣∣∣∣ −λ 0.9
0.9 0.8− h− λ

∣∣∣∣ = 0, giving −λ(0.8−h−λ)− 0.81 = 0.

If λ=1 is to be a solution, we must have −(0.8−h−1)− 0.81 = 0, so that h=0.61.

For h=0.61, T
==

=

[
0 0.9

0.9 0.19

]
, and λ=1 gives eigenvector v

∼
= t

[
9

10

]
(check).

Therefore, a population of 9 young for every 10 adults will allow 61% of adults to be harvested
each year while maintaining a stable population.

If we wanted to harvest 122 adults each year, we normalise this vector by choosing han =
0.61×10t=122, i.e. by setting t=20. The initial population of young is then 180, adults 200.

What happens if, say, h = 0.55 or 0.66, slight variations on the harvesting rate? We can
recalculate the eigenvalue corresponding to 1 and the corresponding eigenvector to see how
they change but this doesn’t give us much idea of how the populations then vary over time
(the new eigenvalue does give the growth rate). Plotting the populations shows us this.

Changing h in T
==

=

[
0 0.9

0.9 0.8− h

]
and using the POPMX4/POPMX4CE program does this

quickly.

Adults (top curve) and young, 15 cycles, with h=0.61, h=0.55 and h=0.66, respectively.

window [0, 15, 1]×[0, 400, 50]
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20.2 Matrix-modelling programs

Available at canberramaths.org.au under Resources.

POP/POPCE multiplies an n×1 column vector v
∼

(n age classes) by an n×n matrix T
==

(transition matrix), displays the new v
∼

and the sum of the components of v
∼

(total population).

Use: Store T
==

in matrix [A] and v
∼

in matrix [B]. Run the program for the first step; press

enter repeatedly for subsequent steps. Press on 1 (Quit) to stop the program.

POPMX4/POPMX4CE calculates and plots as a function of cycle number (time) the num-
bers in from 2 to 4 age classes of a population which is modelled using a projection matrix.

WHALES/WHALESCE is a version specifically for the problem on killer whales on page
155. POPCLEAR/POPCLRCE deletes all the lists used in WHALES/WHALESCE and
resets defaults. Run when you have finished using a program.

POPMXM/POPMXMCE calculates and displays (no plots) as a function of cycle number
(time) the numbers in M age classes of a population and gives the ratios of the individual
populations.

Use: Put your 2×2, 3×3, 4×4 or m×m projection matrix P
==

in matrix [A] and the initial

populations in the different age classes in the 2×1, 3×1, 4×1 or m×1 matrix [B].

Run the relevant program and input the number of cycles for which you wish to calculate the
populations. The program will do the calculations.

POPMX4/POPMX4CE pauses in trace mode so that you can analyse the graphs. The arrow
keys allow you to move along a graph or from graph to graph. Which graph the cursor is on
is indicated at the top left of the screen.

Pressing enter then gives a plot of the total population versus cycle number. Again you

can trace this graph.

Pressing enter again gives you a menu from which you can either quit, keeping the matrices,
lists and other settings, or quit, deleting everything. The former allows you to replot data or
look at the numbers in stat Edit. The latter is a good option when you have finished.

Once POPMX4/POPMX4CE has finished (and you keep all the data), you can replot and
trace any or all of the graphs of the individual populations versus cycle by selecting the
appropriate plot in the y= menu.

You can change the window either manually in the window menu or using zoom 9 (Zoom-
Stat).

To plot the graph of the fourth population class, you will have to change the Ylist to LCLS4
in one of the plots using statplot

(
2nd y=

)
.

The data generated in these programs are stored in lists which can be accessed by pressing
stat Edit. Scrolling across will show the lists not initially on the screen.
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20.3 Solutions

Exercise: Leslie matrices and beetles 1

(a) Writing out the equations for the three beetle age classes,

y1 = 0y0 + 2.75a0 + 2.5s0

a1 = 0.25y0 + 0a0 + 0s0 or

s1 = 0y0 + 0.5a0 + 0s0

 y1

a1

s1

 =

 0 2.75 2.5
0.25 0 0

0 0.5 0

 y0

a0

s0

 .
Therefore, T

==
=

 0 2.75 2.5
0.25 0 0

0 0.5 0

.

(b) v
∼1 = T

==

 40
0
0

 =

 0
10
0

.

(c) After cycle v
∼

Total pop’n

1

 0

10

0

 10

2

 27.5

0

5

 32.5

...
...

...

11

 17.320

4.305

2.184

 23.809

12

 17.299

4.330

2.153

 23.781

13

 17.289

4.325

2.165

 23.779

Young and adults, 15 cycles Total population

window [0, 15, 1]×[0, 60, 5]

The total population seems to be stabilising at a little under 24, and the ratios of the popu-
lations in the 3 classes at about 8 :2 :1.
Divide the first two numbers by the third (smallest) number to see this.
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Exercise: Leslie matrices and beetles 2

In the previous exercise we found that a certain population of beetles was described by the
equations v

∼n+1 = T
==
v
∼n

, where

T
==

=

 0 2.75 2.5
0.25 0 0

0 0.5 0

 .
An orchardist has beetles in her trees and knows the beetle population evolves as described
by this transition matrix,

At the start of last year she employed a pest-control company to reduce the beetle numbers;
they did that (they claim) by using a spray that killed off the senior beetles.

This year the orchardist did a survey over 50 trees and found 800 young beetles, 200 adults
and 100 seniors.

She now says the pest-control company failed and she wants her money back.

Does she have a case?

To go backwards, we use T
==

−1. The number of beetles the year before, supposedly after the

pest-control company killed off all the seniors, is

T
==

−1

 800
200
100

 =

 800
200
100

 .
Two things come out here. One is that the pest-control company could not have killed off all
the seniors the year before. Clearly the orchardist has a good case.

The second point is that

 800
200
100

 = 100

 8
2
1

 is a steady-state vector for the population

with this transition matrix.
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Exercise: Populations and oscillations

(a) After 1 cycle: v
∼1 =

 0 0 8
0.5 0 0
0 0.25 0

 1
0.01
0.01

 =

 0.08
0.5

0.0025

, so P =0.5825.

From successive cycles, we build up a table.

Cycle 0 1 2 3 4 5 6 · · ·
Pop’n 1.02 0.5825 0.185 1.02 0.5825 0.185 1.02 · · ·

The population is oscillating or going in waves, with no overall growth or decline.

A group of young must first become adults (survival rate 0.5), then seniors ( survival
rate 0.25) before producing a new group of 8 young; the process then repeats itself.

The overall survival rate between young and seniors of 0.5×0.25=1/8 is balanced by a
birth rate of 8, so that the overall population is not growing or declining.

(b) The populations are now 1.02, 0.755, 0.41, 1.785, 1.321, 0.718, 3.124, 2.312, 1.256, 5.467,
4.046, 2.197, 9.566, 7.081, 3.846, 16,741, . . . .

The population is oscillating, but growing overall. The birth rate of 5 and the survival
rate of 0.7×0.5=0.35 gives an overall growth rate of 1.75 (dashed line).
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Exercise: A bank workforce

The manager of a bank has in his workforce tn trainee tellers and sn senior tellers at the start
of Year n. At the end of each year:

— the number of new trainee tellers recruited is set equal to the number of senior tellers
in the bank that year;

— 36% of trainee tellers graduate to become seniors; 24% are allowed to break their contract
and leave the bank, while the rest remain as trainees;

— 40% of senior tellers are promoted to higher positions; 20% of senior tellers leave; the
remainder stay as senior tellers.

(a) Write down the equations for the teller workforce at the start of Year n+1 in terms of
the workforce at the start of Year n.

tn+1 = 0.4tn + sn

sn+1 = 0.36tn + 0.4sn

(b) Convert the equations in (a) to matrix form.[
tn+1

sn+1

]
=

[
0.4 1
0.36 0.4

] [
tn
sn

]
.

(c) If there are 125 trainees and 125 senior tellers at the start of Year 1, how many of each
are there at the start of Year 3?

We are given that

[
t1
s1

]
=

[
125
125

]
.

Therefore, at the start of Year 2, we have[
t2
s2

]
=

[
0.4 1
0.36 0.4

] [
125
125

]
=

[
175
95

]
.

At the start of Year 3, we have[
t3
s3

]
=

[
0.4 1
0.36 0.4

] [
175
95

]
=

[
165
101

]
.

There are 165 trainee tellers and 101 senior tellers at the start of Year 3.

With your graphics calculator, you can calculate directly[
t3
s3

]
=

[
0.4 1
0.36 0.4

]2 [
125
125

]
=

[
165
101

]
.
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(d) Is there a steady state here? If so, what is it?

If we continue to multiply by the transition matrix

[
0.4 1
0.36 0.4

]
, we find the steady-

state workforce is [
166.6̇
100

]
=

[
500
3

100

]
= 100

[
5
3

1

]
,

that is 166 or 167 trainee tellers and 100 senior tellers.

(e) Find the eigenvalues and eigenvectors of the transition matrix and reconcile them with
your answer in (d).

The eigenvalues are −0.2 and 1. The larger of these indicates a steady state of no
growth.

The corresponding eigenvector is

[
5
3

1

]
, in agreement with the calculations above.

20.3.1 Exercise: Disease modelling

A population of mice in a medical experiment is specified at the beginning of Week n by the
number hn of healthy mice and the number in of mice infected by the virus under investigation.

During each week:

40% of the healthy mice contract the virus;

30% of the infected mice recover to become healthy again;

50% of the infected mice die.

(a) Find the linear equations that give the number of healthy mice hn+1 and the number of
infected mice in+1 at the beginning of Week n+1 in terms of the numbers hn, in at the
beginning of Week n.

hn+1 = 0.6hn + 0.3in

in+1 = 0.4hn + 0.2in

(b) Define the mouse population vector v
∼n

=

[
hn
in

]
and write your equations in matrix

form.

v
∼n+1 =

[
0.6 0.3
0.4 0.2

]
v
∼n

= T
==
v
∼n
.

PTO
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(c) If the experiment starts at the beginning of Week 1 with 1000 healthy mice, use your
matrix equation to find the populations of healthy and infected mice at the beginning
of Week 2.

We have v
∼1 =

[
1000

0

]
. Therefore, at the beginning of Week 2, the population is

v
∼2 = T

==
v
∼1 =

[
0.6 0.3
0.4 0.2

] [
1000

0

]
=

[
600
400

]
.

There are 600 healthy mice and 400 infected mice at the beginning of Week 2.

(d) Find the respective populations at the beginning of Week 8.

Using the calculator to work through 7 cycles or calculating v
∼8 = T

==

7v
∼1 gives

v
∼8 =

[
157
105

]
,

both rounded to the nearest integer.

Therefore, there are 157 healthy and 105 infected mice at the beginning of Week 8.

(e) Given 1000 mice to start with, how many would have to be healthy and how many
infected to start with the ‘steady state’?

From (d), we observe that the ‘steady state’ contains healthy and infected mice in the
ratio 1.5 : 1. You could verify this by finding the eigenvector corresponding to the larger
eigenvalue of T

==
, λ=0.8.

Therefore, we should start with 600 healthy mice and 400 infected mice. This is actually
achieved after the first cycle.

What is the form of ‘steady state’ here?

The ‘steady state’ contains healthy and infected mice in the ratio 1.5 : 1, but the total
population is reduced by 20% each cycle.

What do you predict for the long-term future of this population?

Extinction.
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Exercise: Killer whales

1. A project you are involved in wants to re-introduce killer whales into an area of ocean
from which they have disappeared. The project leader wants to know what is the best
combination of juveniles and mature females to re-introduce, assuming an overall total
of 50 (plus an appropriate number of adult males).

You model three options, with the resulting plots shown below. The left-hand plots
show the populations of juvenile females (squares), mature females (crosses) and post-
reproductive females (PRF: thin line); the right-hand plots show the total population
(including yearlings), both as functions of the number of cycles (1 cycle = 1 year).

(a) 50 juveniles.

(b) 40 juveniles and 10 mature females.

(c) 50 adult females.

PTO
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What happens to the different population classes of female killer whales over time in each
of these options (according to this model)? What is the best strategy for re-establishing
the killer-whale population?

After about 15 years, in all three options, there are approximately equal numbers of ju-
venile and mature females, and this remains the case: both populations are increasing.
The greater the inital number of mature females, the greater the numbers of both juve-
nile and mature females at any given cycle. The number of post-reproductive females
follows a similar trend in all three options.38

In terms of the best strategy for re-introducing killer whales, it probably comes down to
cost. Clearly the best option, according to the model, is to introduce all mature females
but it could take quite a long time (and be expensive) to breed up a sufficient number,
given it takes at least 14 years to maturity. Releasing all juveniles, a much cheaper
option, runs the risk that not enough of the inexperienced juveniles survive long enough
to establish a sustainable population. Some combination of juvenile and mature females
may be the best option.

2. Does the trend in the total population depend on which option you choose?

In the three options with different initial populations, the trend is the same: the overall
female population increases. However, the greater the inital number of mature females,
the greater the total population at any given cycle. The fact of an increase in total
population (and the eventual ratios of the populations in the four classes) does not
depend on the initial populations in each of the classes.

3. The value of 0.1138 in the top row of T
==

gives the number of live births per mature female

per cycle (year). To what value could this birth rate fall before the total population
starts to decrease?

This birth rate is clearly important for the overall survival of killer whales.

Experimenting with different values of the birth rate for mature females, either manually
or using POPMT4/POPMT4CE, shows that the population becomes steady when the
value is about 0.055 (λp≈1), i.e. about 48% of the observed value. For birth rates less
than 0.055, the total population will decline.

4. How sensitive is the population to the survival rates of yearlings (0.9775), juveniles
(0.9111), mature females (0.9534) and post-reproductive females (0.9804)?

The female population is more sensitive to the survival rates than to the birth rates,
especially that of the mature females. Reducing the survival rate of 0.9534 for mature
females to 0.905 (a reduction of only 5%) is enough to stop the population growing.

For the other classes, the corresponding values are: yearlings 0.9775 down to 0.49 (50%);
juveniles 0.9111 down to 0.82 (10%). The growth or otherwise of the population is
unaffected by the survival rate of post-reproductive females in this model.

38The ratios of the populations in the different classes are those of the components of the eigenvector of the
population-projection matrix corresponding to λp.
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Exercise: Age distribution of trees in a forest

1. If the population of trees in time interval n is N=bn+yn+mn+on, show that the
population stays the same size after one more time step, and so by induction the
population of trees is a constant N .

Adding the four equations gives

bn+1 + yn+1 +mn+1 + on+1 = αbn + βyn + γmn + δon + (1−α)bn

+ (1−β)yn + (1−γ)mn + (1−δ)on

= bn + yn +mn + on

= N.

Therefore, the population of trees stays the same size after one more time step,
and so by induction the population of trees is a constant N .

2. Equations (1) – (4) are linear in the dependent variables so that matrices are a way
of solving the problem. Define v

∼n
= (bn, yn,mn, on)T (a column vector) and write

down the matrix T
==

that you would use in the matrix model v
∼n+1 =T

==
v
∼n

of these

equations.

Equations (1) – (4) can be written in matrix form as

v
∼n+1 =


bn+1

yn+1

mn+1

on+1

 =


α β γ δ

1−α 0 0 0
0 1−β 0 0
0 0 1−γ 1−δ




bn
yn
mn

on

 ,
so that

T
==

=


α β γ δ

1−α 0 0 0
0 1−β 0 0
0 0 1−γ 1−δ

 .

3. Take α=0.2, β=0.5, γ=0.3, δ=0.2 and N=1000. Write down the matrix T
==

with

these values.

T
==

=


0.2 0.5 0.3 0.2
0.8 0 0 0
0 0.5 0 0
0 0 0.7 0.8

 .

PTO
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4. Four initial conditions are needed in order to fully solve this matrix equation.
Assume all baby trees initially.

Run the matrix model in Problems 2 and 3 through 10 cycles (150 years). Do the
individual populations appear to be stabilising?

Run the model v
∼n+1 =T

==
v
∼n

through 10 cycles with v
∼0 =

 1000
0
0
0

, that is all baby

trees initially: with T
==

in matrix [A] and v
∼0 in matrix [B], execute the command

[A] [B] → [B], then press enter nine times.

Alternatively, with T
==

in matrix [A] and v
∼0 in matrix [B], run the POPMX4/

POPMX4CE program. This produces the following graph of the first three popu-
lations versus cycle number. The window is [−0.2, 10.2, 1]×[0, 1100, 100].

Here, the graph of bn is in black, yn in blue and mn in red.

The number in each population appears to be stabilising: bn at around 279; yn at
around 223; and mn around 112. The corresponding value of on is 386.

5. Use the EIGENV5/EIGNV5CE program to find the eigenvalues of T
==

.

The eigenvalues are −0.358, −0.2, 0,558 and 1.

6. Find the eigenvector of T
==

corresponding to λ= 1 (explain why we use this value)

and relate this to the behaviour of the model that you found in Problem 4.

An eigenvector of 1 means the total population does not change, the case here. The
corresponding eigenvector from EIGENV5/EIGNV5CE, normalised to a maximum
component of 1, is 

0.7143
0.5714
0.2857

1

,
giving a total population of 2.5714.

To relate this to the problem here, we multiply the eigenvector by 1000/2.5714 to
give a total population of 1000. The new eigenvector, giving the four populations
after a large (actually infinite) number of cycles, is (values rounded to integers)

278
222
111
389

,
in good agreement with our results after 10 cycles in Problem 4.
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21 Fitting Curves to Data 2

21.1 Introduction

Much scientific and other research involves data. Fitting a function to the data is a way of
summarising the data; if the fit is good, the fitted curve can be used instead of the data in
further calculations, especially useful if Calculus is involved. Sometimes the function chosen
is guided by the theory involved, for example motion under gravity. At other times, the choice
is empirical: the function which gives the best fit is used.

The material here is especially relevant to the second case. A range of functions is given,
together with an example of each in fitting a given dataset. The functions available on the
TI-84/CE to fit data are dealt with in Fitting Curves to Data 1 in the first volume of this
book, Here, we look at fitting polynomials to data, then work through the functions available
using the CURVEFIT/CRVFITCE program39 In most cases, an indication of the goodness of
the fit is given, usually the correlation coefficient r and r2 or the coefficient of determination
R2. Finally, we look at time averaging of data.

21.2 Exact fitting of polynomials to data

One very commonly used class of functions used to fit data is polynomials. Examples have
already been encountered in Fitting Curves to Data 1 ; the fits there are exact when the
number of points fitted is the same as the number of coefficients in the equation to be fitted.
If there are more points than coefficients, the curve of best fit (regression) is obtained.

A general polynomial of degree m is of the form

y = a0 + a1x + a2x
2 + a3

x + a4x
4 + · · · + amx

m. (1)

The data points to be fitted are then used to find the coefficients a0, a1, a2, . . . , am, using
the fact that the x and y values of each point must satisfy the polynomial. A polynomial of
degree m has m+1 coefficients, and therefore will fit m+1 data points exactly. This is what
we do here. The method applies to polynomials of any degree.

Note: If critical points (y′=0) are given, differentiate Eq. (1) and substitute the coordinates
of the point into the derivative (a polynomial). Similarly with points of inflection (y′′=0).

21.2.1 Manual method

Find a polynomial passing through the 10 points shown in the screen below.

There are 10 data points, so we can fit a unique 9th-degree polynomial

y = a0 + a1x + a2x
2 + . . . + a9x

9, (2)

which has the 10 unknowns a0, a1, a2, . . . , a9.
39available at canberramaths.org.au under Resources
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Substituting the x and y values of each data point into Eq. (2) gives 10 linear equations:

a0 = 1

a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = 2

a0 + 2a1x+ 4a2 + 8a3 + 16a4 + 32a5 + 64a6 + 128a7 + 256a8 + 512a9 = 6

a0 + 3a1 + 9a2 + 27a3 + 81a4 + 243a5 + a636 + a737 + a838 + a939 = 5

a0 + 4a1 + 16a2 + 64a3 + 256a4 + a545 + a646 + a747 + a848 + a949 = 6

a0 + 5a1 + 25a2 + 125a3 + 625a4 + a555 + a656 + a757 + a858 + a959 = 3

a0 + 6a1 + 36a2 + 216a3 + a464 + a565 + a666 + a767 + a868 + a969 = 3

a0 + 7a1 + 49a2 + 343a3 + a474 + a575 + a676 + a777 + a878 + a979 = 8

a0 + 8a1 + 64a2 + 512a3 + a484 + a585 + a686 + a787 + a888 + a989 = 9

a0 + 9a1 + 81a2 + 729a3 + a494 + a595 + a696 + a797 + a898 + a999 = 8

Solving these equations40 gives (to 4 significant digits) a0 = 1, a1 =−76.32, a2 = 187.4, a3 =
−175.0, a4 =85.45, a5 =−24.25, a6 =4.138, a7 =−0.4183, a8 =0.02307 and a9 =−5.346×10−4.

window [−0.5, 10, 2]×[−12, 10, 5]

Once we find a formula for the polynomial, we can use it to give y values for x values between
the data points — this is called interpolation.

We can also use the formula to find y values when x is outside the set of x values for which
data are available. This is called extrapolation, and can be dangerous, as the curve might in
practice behave quite differently beyond the measured data points, as it does here.

21.2.2 Using a program

This process is automated in the polynomial-fit program POLYFIT/POLYFTCE. This fits a
polynomial of degree N to N+1 points, then plots the polynomial, displays the coefficients
and calculates points on the polynomial. The polynomial is stored in Y7.

The program is available at canberramaths.org.au under Resources.

40by Gauss Elimination or the inverse-matrix method— see Matrix and Vector Operations, Chapter 19
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Use

Run the program. Select INPUT POINTS and enter the points on the prompts. The points
are copied to lists LX and LY.41 Press CALCULATE FIT to do the calculations.

Select GRAPH to graph the polynomial and the points.

CHANGE WINDOW allows you to change the X range for the graph, with the calculator
automatically choosing the Y range.

DISPLAY COEFFICIENTS displays the coefficients of the polynomial in ascending powers of
x.

CALCULATE POINT allows you to calculate a point on the polynomial.

QUIT does just that: not deleting the data leaves everything as it is; deleting the data removes
everything, but you can still plot the polynomial in Y7.42

Try it out on the 10 points above. You’ll find that the polynomial is not defined at x = 0
because the calculator cannot calculate 00 in Y7. The curve disappears near this point but
clearly passes through the point (0, 1) if you expand the window out in both directions.

Exercise: Fit a polynomial to the points (0, 1), (1, 6), (−1, 0), (2, 63), (−2,−21) and (−3,−182).

Answer : y=x5+x4+x3+x2+x+1.

PTO

41If you need to change a point, Quit out of the program without deleting the data. Press stat Edit,
change the point(s), then rerun the program and recalculate if necessary.

42the coefficient list LCOEF is not deleted, as it is used by Y7
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21.3 Using the CURVEFIT/CRVFITCE program

Reference: Curve Fitting for Programmable Calculators by William M. Colb, Syntec, 1984.

The CURVEFIT/CRVFITCE program43 fits 19 different functions (curves) to the data in lists
L1 (x) and L2 (y), and displays the correlation coefficient (coefficient of determination) R2

and conditional correlation coefficient44 R2
c (CE only) for the fit. The screens below show use

of the program up to the selection of the function.

The second option in the main menu, FIND BEST FIT, fits all 19 functions to the data, then
tells you the function of best fit, the one with the largest value of R2 (Section 21.3.20).

The origin and application of some of these functions are often somewhat esoteric but all
can be used to fit data. Which one to use depends on the characteristics of your data (e.g.
maxima and/or minima) and the behaviour of the different functions. Clearly, there’s no point
in fitting a quadratic function to data with an obvious maximum and minimum. Ultimately,
you can use the correlation coefficient (coefficient of determination) R2 to give you some
indication, and the best-fit option to pick out the mathematically best fit.

We use the data shown below45 for all the fits. The window for all the plots showing the
function fitted to the data is [0, 10, 2]×[0, 10, 2]. Also given in many cases is a plot showing
the general shape of the function when this is not obvious from the first plot.

43Both programs and their three subprograms, MCFSUB0, MCFSUB1 and MCFSUB2, are available in-
dividually or in the respective group files, CURVE.8xg and CURVECE.8xg, at canberramaths.org.au under
Resources.

44I don’t understand what this is, even after looking it up. If you think it is important for your application,
you probably already know much more than I do. Otherwise, look it up or ask a statistician.

45the data used in Fitting Curves to Data 1 in Volume 1 of this book

173



21.3 Using the CURVEFIT/CRVFITCE program 21 FITTING CURVES TO DATA 2

21.3.1 Linear: Y=A+BX

Same as LinReg(ax+b) in Fitting Curves to Data 1 in Volume 1 of this book.
See the discussion there.

21.3.2 Reciprocal: Y=1/(A+BX)

The reciprocal function is one of the simplest functions having an infinite discontinuity (when
A+BX = 0), not seen in the graphs here. Such discontinuities in modelling usually represent a
system moving beyond physical bounds (and usually self-destructing). Resonance in a system
is one such situation.

21.3.3 Linear-hyperbolic: Y=A+BX+C/X

This function becomes linear for large enough x, and hence tends to ±∞, but starts with an
infinite discontinuity at x= 0. With appropriate choices for A and B, the curve can have a
local maximum or minimum, or can be monotonic.
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21.3.4 Hyperbolic: Y=A+B/X

Has an infinite discontinuity at x=0, then tends asymptotically to the constant value A.

21.3.5 Reciprocal hyperbolic: Y=X/(AX+B)

Is zero at X = 0 (unless B = 0) and has an infinite discontinuity when A+BX = 0.
The right-hand graph shows its behaviour when A> 0.

21.3.6 Second-order hyperbolic: Y=A+B/X+C/X2

Similar behaviour to the hyperbolic function (Section 21.3.4).
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21.3.7 Parabolic: Y=A+BX+CX2

Same as QuadReg in Fitting Curves to Data 1 in Volume 1 of this book.
See the discussion there.

21.3.8 Cauchy Distribution: Y=1/(A(X+B)2+C)

A well-known continuous probability distribution, also known to physicists as the Lorentz
distribution. Can have an infinite discontinuity for positive X if A and C have opposite signs.

21.3.9 Logarithmic: Y=A+Bln(X)

Same as LnReg in Fitting Curves to Data 1 in Volume 1 of this book.
See the discussion there.
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21.3.10 Reciprocal logarithmic: Y=1/(A+Bln(X))

This function is only defined for X> 0 because of the ln(X). ln(X) tends to −∞ as x → 0
and ∞ as x → ∞, so eventually the function tends to 0 in both limits. There is also an
infinite discontinuity when A+Bln(X) = 0: if A and B have the same sign, this will occur
when 0<X<1

(
ln(X)< 0

)
; otherwise at some X> 1 (X≈ 34 here).

21.3.11 Power: Y=AX∧B

Same as PwrReg in Fitting Curves to Data 1 in Volume 1 of this book.
See the discussion there.

21.3.12 Super exponential: Y=AX∧(BX)

Called Super geometric in the original publication but has no connection to the Geometric
Distribution. Defined for X> 0, tends to 0 or ∞ as X→∞, depending on the sign of B.
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21.3.13 Modified exponential: Y=AX∧(B/X)

Called Modified geometric in the original publication but also has no connection to the Geo-
metric Distribution. Defined for X> 0, tends to A as X→∞. Has a local maximum if A and
B are positive, a local minimum if A is negative, B positive. Is monotonic if B is negative.

21.3.14 Hoerl Function: Y=AB∧X∗X∧C

The exponential dominates for large enough X, so the function tends asymptotically to 0 if
|B|< 1, with a local maximum or minimum if C is positive. If |B|> 1, the function tends to
±∞.

21.3.15 Modified Hoerl: Y=AB∧(1/X)X∧C

The exponential dominates for large enough X, so the behaviour of the function then depends
on whether |B|< 1 (tends to 0) or |B|> 1 (tends to ±∞).
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21.3.16 Log-Normal: Y=Ae∧((B−ln(X))2/C)

A well-known continuous probability distribution, defined for X> 0.

21.3.17 Exponential: Y=AB∧X

Same as ExpReg in Fitting Curves to Data 1 in Volume 1 of this book.
See the discussion there.

21.3.18 Root: Y=AB∧(1/X)

Similar to the logarithmic distribution but starts at the origin.
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21.3.19 Normal Distribution: Y=Ae∧((X−B)2/C)

A very well-known continuous probability distribution with a bell-shaped graph.

21.3.20 Best fit
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21.4 Time averaging of data

Some data can vary quite rapidly over short time scales such as the numbers of daily confirmed
Covid cases in Sydney over 40 days, starting on March 1, 2020, in the table below.46

It can be difficult to discern trends in such data, so often the data are averaged over several
days, moving-average data, to smooth out the bumps.

Day Cases Day Cases
1 2 21 119
2 3 22 121
3 7 23 176
4 6 24 192
5 4 25 205
6 7 26 185
7 2 27 312
8 7 28 142
9 13 29 124
10 6 30 90
11 16 31 131
12 14 32 125
13 19 33 92
14 20 34 106
15 38 35 73
16 29 36 63
17 64 37 40
18 45 38 44
19 56 39 44
20 88 40 41

The MOVEAVGE/MVEAVGCE program47 calculates and plots the data in lists L1 and L2

averaged over a period of C days, where you specify C; the first two screens of the program
are shown below.

PTO

46https://data.nsw.gov.au/data/dataset/aefcde60-3b0c-4bc0-9af. . . f52778048b29/download/confirmed cases table1 location.csv
47available at canberramaths.org.au under Resources.
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For example, if C = 7, the first data point in the average is at t=4; the corresponding number
of Covid cases is the average of the first 7 values: the three before t= 4; the value at t= 4;
and the three after t=4, and so on.

raw data: window [0, 40, 5]×[0, 350, 50]

7-day (single) averaged data 3-day (single) averaged data

The program also calculates a double average, the average of the single-average values, for
even greater smoothing.

7-day double-averaged data
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22 Financial Mathematics 2: TVM Calculations

22.1 Introduction

Financial Mathematics: Part 1 dealt with the basic calculations of compound interest, in-
cluding the use of sequences on the calculator. Here, to be able to do some useful financial
modelling, such as comparing loans, etc, we use the TVM (Time Value of Money) Solver.

The TVM notes are closely based on Chapter 11 of Mathematics with a Graphics Calculator:
Casio cfx-9850G PLUS by Barry Kissane. This book is a real bible on everything a graphics
calculator can do and how to do it on a Casio graphics calculator. Still very relevant but
sadly now hard to find.

Texas Instruments also has a book, Time, Value, Money: Applications on the TI-83, which
covers all the financial calculations you are ever going to want to do, and then more. If you
are using calculators from the TI-84 family, this is an invaluable resource.

Section 22.2 here covers calculations which involve compound interest, such as savings with
or without regular payments, loans, discounting, effective rate of interest, annuities, sinking
funds, leasing and bonds. Other calculations, such as days and dates, cost price/selling
price/margins and cash-flow analysis, you will find in the TI book.

The good news is that all the compound-interest calculations are essentially the same: you
specify the values of all the variables except one, then find the one you don’t know. This is
much simplified by using the TVM Solver on the calculator.

There are plenty of TVM exercises and activities with solutions in Sections 22.4 and 22.5.

References

Mathematics with a Graphics Calculator: Casio cfx-9850G PLUS by Barry Kissane,
The Mathematical Association of Western Australia, 2003, ISBN 1 876583 24 X.

Time, Value, Money: Applications on the TI-83 by Roseanne and Charles Hoffman,
Texas Instruments, 1997, ISBN 1 886309 09 4.

PTO
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22.2 Using the TVM Solver

The TVM Solver solves the same basic equations as those encountered in Financial Mathe-
matics 1 in Volume 1, with the addition of regular payments or repayments; it just makes
solving the equations easy.

22.2.1 Selecting the TVM Solver

First press mode and select 2
(
third line; use the arrow keys and enter

)
to set 2 decimal

places for answers in dollar and cents.

The TVM Solver is in the Finance App: press the apps key and select Finance. Most of the

other options are variables to use in programs (but see Section 22.2.4).

Press 1 to select the TVM Solver.

The TVM screen shows that a number of variables are possibly involved in calculations
involving compound interest. To use the TVM module, you need to specify the value of
each of the variables except one; the calculator works out the missing one for you.
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Variables

N: the number of payment periods; if no regular payments, the number of years involved.

I%: the annual rate of interest, given as a percentage.

PV: the present value of the loan or investment. In the case of a loan, the amount borrowed.
In the case of an investment, the original deposit.

PMT: the regular payment — either repaying a loan, depositing money for investment or a
regular payment from a superannuation or investment account.

FV: the future value of the loan or investment. For a loan, this is usually zero, since the
loan must be all paid off.

P/Y: the number of payments made per year. Set to 1 if there are no payments made.

C/Y: the number of compounding periods per year (in case it is different from P/Y).

For each variable, enter the necessary value, followed by enter or the up/down-arrow key.

The calculator will set P/Y and C/Y to be the same as soon as you enter P/Y, as these two
are usually the same. If they are not the same, you must enter P/Y first, then C/Y.

PMT on the bottom line should be set to END — use the arrow keys and enter .

Important Note: Payments made to you (from the bank) are positive, payments made by
you (to the bank) are negative.

22.2.2 Compound interest

Most interest calculations involve compound interest, in which interest is paid on the amount
of money still owing on a loan or earned on the amount of money in the account (not just on
what was originally deposited).

The simplest case of compound interest is depositing some money into an account and leaving
it there for some time to accrue interest.

Example 1

An inheritance of $5000 is placed into an investment account paying 11% interest per annum,
compounded annually. How much will there be in the account after 5 years?

As shown in the figure below, N, the number of years, is set to 5, I% to 11, PMT to 0 as
there are no regular payments, and P/Y and C/Y to 1. Note that 1 is the minimum value
permitted by the calculator for P/Y, even though there are no payments.

PV, the present value, is set to −5000, negative because this amount is paid to the bank.

To find FV, the future value of this investment (the amount after 5 years), move the cursor

to FV (it doesn’t matter what number is there) and press solve
(

alpha enter
)
.

After 5 years, the investment will have grown to $8425.29, positive because it is paid to you.
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Compound interest can also be calculated without using the TVM Solver. The variables here
are related by the standard formula1

FV = PV

(
1 +

I%

100

)N

. (1)

Evaluating this formula with the parameter values of Example 1, shown below, gives the same
answer as the TVM Solver.

Other TVM calculations can also be done directly using the appropriate formula, but it is
usually easier (and sometimes a lot easier) to let the calculator to do them for you. However,
you should understand what the calculator is doing.

Example 2

How much is in the account in Example 1 if the interest is now compounded every three
months (quarterly)?

Here we just change C/Y to 4. Again, evaluate FV by moving the cursor to FV and pressing

solve
(

alpha enter
)
.

The future value has increased to $8602.14, so only an extra $176.85 over the 5 years.

22.2.3 Discounting

Compound-interest calculations can be used to find the future value of an investment at a
certain rate of interest. However, sometimes we are interested in the opposite problem: finding
the present value of a specific sum of money some time in the future.

One good reason for doing this is to compare various kinds of investments. If all are expressed
in present values, a direct comparison can be made. We could also compare investments by
calculating their future values, but the use of present values allows for today’s money values
to be used directly.

The process of finding the present value of a guaranteed future sum of money is called dis-
counting, and the interest rate involved called the discount rate.

The relationship between PV and FV in Eq. (1) can be rearranged to show how PV can be
calculated:

PV =
FV(

1 + I%
100

)N . (2)

1If this formula is not familiar to your students, you need to work through Financial Mathematics 1 in
Volume 1.
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In the TVM module, discounting is performed by entering the appropriate values for FV, I%
and N, then calculating PV.

Example 3

What is the present value of $10,000 paid to you in 10 years’ time, assuming a discount rate
of 8% per annum?

The TVM set up is shown below after setting the cursor on PV and pressing solve .

Again, it doesn’t matter what value is in PV when you press solve , as this is the value being
calculated.

The present value is $4631.93, negative in the TVM result because you would have to pay
this amount now to have the $10,000 (FV positive) paid to you in 10 years’ time, given an
annual interest rate of 8%.

You can check this result using Eq. (2) or by calculating that an investment of $4631.93 at
8% per annum for 10 years will yield $10,000.

22.2.4 Effective rate of interest

As seen above, if interest is compounded more often than annually, the amount of interest
involved increases, as there is more interest on the interest. To compare interest rates, you
therefore need to know how often the interest is compounded. Most interest rates are given
as a rate per annum, sometimes called the nominal rate (annual compounding).

The effective rate of interest takes into account the fact that the interest can be compounded
more than once a year. The effective rate of interest is useful for comparing different financial
offerings.

Essentially we first calculate the total amount of interest earned on an amount of say $1000
(the amount does not matter) for 1 year under whatever compounding scheme is used. We
then calculate the annual interest rate that would have generated this amount if there were
annual compounding: this is the effective rate.

Example 4

Consider an investment of $1000 for 1 year at 9% per annum. After 1 year, if there is annual
compounding, the total interest is 9% of $1000 or $90, and the future value is $1090.

If the interest were compounded monthly instead of annually, the interest rate would be 0.75%
per month (9%÷12), and the future value can be determined from Eq. (1). The interest rate
here must be the monthly interest rate and the number of payment periods 12N:

FV = PV

(
1 +

I%

1200

)12N

= 1000
(
1+0.0075

)12
= $1093.81.

PTO

187



22.2 Using the TVM Solver 22 FINANCIAL MATHEMATICS 2

The screens below show these calculations both from the formula and using the TVM Solver.
Note that, for monthly compounding for a year, N = 1, P/Y = 1 (no regular payments), but
C/Y = 12.

The investment in this case has earned interest of $93.81, the amount of interest that would be
earned with a (nominal) rate of interest of 9.38% compounded annually. This is the effective
rate of interest.

You can calculate the effective rate of interest directly using the command IEff in the Finance
menu. Scroll down this menu (it’s actually faster scrolling up) until you come to this command,
press enter to select it, enter the nominal interest rate and the number of compounding
periods in a year, separated by a comma, and press enter to evaluate the command.

For the present case, evaluate IEff (9, 12) to give the answer 9.38% (to 2 decimal places).

If you now use the (inverse) command INom (9.38, 12), the calculator will give the nominal
rate corresponding to an effective rate of 9.38%, as shown above.

22.2.5 Analysing a loan

Most loans involve both compound interest and regular payments. Using the calculator we
ask questions like: What if I pay fortnightly rather than monthly? What if the interest rate
changes? What if pay a bit more each payment?, and so on. Here we explore some of those
possibilities in an example.

Example 5

I borrow $9000 to buy a car. The interest rate is 18% per annum, compounded monthly, and
I plan to make monthly payments of $350. How long will it take to pay off the loan?

Here PV is positive because the bank has paid the money to me, PMT is negative because I
pay this to the bank and FV is zero because I will pay off the loan. P/Y and C/Y are both
12 because the payment and compounding periods are monthly.
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Evaluating N, the length of the loan, gives 32.73. The interpretation of this is that 32
payments of $350 are needed, and that the last payment will then be less than this. The loan
will certainly be paid off within 33 months or 2 years 9 months.

Details (and graphs) of the payment-by-payment values — the balance, how much of each
payment goes to interest and how much to paying off the principal, the total interest paid
and total paid off the principal — can be found by running the AMORTTBL/AMRTBLCE

program, which generates an amortisation table — see the Appendix on page 193.

In calculating the total interest paid, we can use the amortisation table or we can just do the
calculation

total interest = number of payments × payment amount − loan amount.

Here we have total interest = 32.73×350−9000 = $2455.50.

Let’s now look at three alternatives to the original loan, shown in the three screens below. In
each case, we have calculated N.

The first screen shows that if only $8000 is borrowed, perhaps after paying a deposit of $1000,
the loan is paid off in a little over 28 months.

The second screen shows that increasing the payment from $350 to $400 each month on the
original loan of $9000 will reduce the length of the loan to a little less than 28 months.

The third screen shows that making both these changes will reduce the length of the loan to
less than 2 years. The total interest paid here, 23.96×400−8000= $1584, is a saving of $871
on the interest paid on the original loan.

Alternatively, we can ask what the payment needs to be to pay off the loan in say 2 years or
18 months.

The loan can be paid off in 2 years with monthly payments of $449.32, or in 18 months with
monthly payments of $574.25.

The total interest paid is about $1784 and $1337, respectively.
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22.2.6 Annuities

An annuity involves the payment of a regular sum of money over a period of time at a fixed
rate of interest. Although you can regard payments on a loan as a kind of annuity, the term
usually refers to other financial arrangements, such as a superannuation scheme (which has
regular payouts) or a savings scheme (which has regular deposits). All these essentially involve
compound interest, and so can be investigated using the TVM Solver.

Example 6

A family has won a prize of $200,000 in a lottery and decided to use it as an annuity to
provide them with a regular amount of money every 3 months over the next 10 years. They
invest the money in an account paying 8.6% interest per annum, compounded annually. How
much money will they get every 3 months?

Here there are 4 payments per year for 10 years, giving 40 payment periods altogether, so
that N = 40. The present value PV is −200, 000 (they are paying it to the bank), and the
final value FV is 0, since all the money (and interest) will be used. There are 4 payments per
year, so that P/Y = 4 and C/Y = 1, as the interest is compounded annually. The only missing
variable is the payment PMT.

So this annuity provides the family with $7419.22 every 3 months for 10 years.

22.2.7 Sinking funds

A sinking fund is a further example of an annuity, as it involves regular payments over a
certain period, with a fixed rate of compound interest. The idea of a sinking fund is that
money is invested in instalments into a fund for some particular purpose, and accumulates
over time.

Example 7

You estimate you will need $10,000 for a long overseas holiday in 3 years’ time. The rate of
interest available in an investment account is 7%, compounded monthly. How much should
you save each month to reach the goal?

In this case, PV = 0, FV = 10,000 and N=3×12=36.

The required payment is $250.44 per month.
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22.2.8 To lease or to buy?

The TVM Solver is a powerful tool for comparing alternative financial arrangements over dif-
ferent times. One example of this involves deciding whether it’s financially better to purchase
something now or lease it over a period of time.

Example 8

A computer store advertises a computer system for sale at $1999 or offers an alternative
involving leasing. The store will lease the same computer system to you for $75 a month
over 2 years at an interest rate of 12% per annum (compounded monthly). At the end of the
two-year lease, you will be given an option to purchase the system for $400. Should you buy
the computer system now or lease it first and buy it in 2 years’ time?

A quick comparison suggests that there is not much difference between these two choices, as
the total payments for the lease-and-purchase option are 24× $75 + $400 = $2200, a bit more
expensive than the cash purchase.

To explore these options more carefully, we need to have a way of comparing their monetary
value at the same time. One way of doing this is to find the present value of the leasing
option, and compare it with the present value of the cash purchase.

The leasing option comprises two parts: the monthly payments and the residual value of $400.
To determine the present value of 24 monthly payments of $75 each, enter the values as shown
below left, and solve for PV.

The present value of the payments is $1593.25.

To determine the present value of the residual payment of $400, enter the values as shown
above right and evaluate PV.

The present value of the leasing option is $1593.25 + $315.03 = $1908.28.

The cash purchase has a present value of $1999, almost $100 more than this, so it is a
financially better deal to take the lease-and-purchase option in this case.

We could have also compared these two options using their respective future values (in 2
years’ time). In the case of the lease, the screen below shows that the monthly payments
have a future value of $2023.01. Added to the $400 purchase price in 2 years’ time (which of
course has a future value of $400), this gives a total future value of $2423.01.
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The cash-purchase option has a future value of $2538.20:

Again, leasing is the better option in this case.

22.2.9 Bonds

A bond is an agreement by a debtor to pay a certain amount of money (the face value) at a
certain future date (the maturation date) and also to pay a sum of money periodically, the
sum being a fixed percentage (interest rate) of the face value of the bond. Bonds are issued
by public authorities, governments and companies as a way of raising money to finance their
activities. In many cases, a bond has attached to it small dated coupons that can be used to
obtain the periodical payment, so the periodical payments are usually called coupon payments,
and the interest rate of the coupon payments is called a coupon rate. Unlike private bonds
issued by a company seeking to raise capital, government bonds may have some associated
tax implications (which are not considered here).

After they have been issued, bonds can be bought and sold by investors. Naturally enough
then, the main interest in bonds is in determining their present value, deciding how much
they should fetch when traded and thus deciding whether or not they are a good investment.
Government bonds are usually regarded as more secure investments than private bonds, as
there is less risk of default (i.e. there is less risk that the issuing body will not be able to
redeem (pay for) the bonds at the maturation date or make the coupon payments). You can
use the TVM Solver to analyse bonds.

Example 9

A bond is issued on 1 July 2021 by an electricity authority in order to finance a new power
plant. The bond has a face value of $1000, a maturation date of 1 July 2031 (that is, it
matures in 10 years) and a coupon rate of 7%, compounded and paid semi-annually.

You want a rate of return of 9% on your money. Do you buy the bond when it is issued?

In this case, the payments are fixed at 7%÷ 2 = 3.5% of $1000 = $35 every six months, and
the future value is fixed at the face value of $1000. The required rate of return is I% = 9, and
both P/Y and C/Y are set to 2 for semi-annual payment and compounding. There are 20
compounding periods, 2 each year for 10 years.

To obtain the present value of the bond, solve for PV.

So the bond will return 9% on your money if you pay $869.92 for it when it is issued. You
will get a better rate of return than 9% if you pay less than this.
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You can use the same module to calculate the Yield to Maturity (YTM) of a bond. The YTM
is the equivalent interest rate you will earn if you retain the bond until it matures and you
redeem it, as well as collecting the coupon payments up till then.

Example 10

An investor pays $800 for an electricity-authority bond as described in the previous example,
5 years before it matures (and just after a coupon payment was made). What is the YTM?

To calculate the YTM, enter the relevant values and solve for I%.

In this case, the investment will yield 121
2
% interest per annum, compounded semi-annually

(assuming that the electricity authority is able to redeem the bond when it matures).

22.2.10 A cautionary note

The methods here are generally less complicated than those used in practice, and do not
include taxes, fees and other charges. You should seek proper financial advice before making
any financial decisions, rather than relying on the calculations outlined here.

22.3 Appendix: Amortisation tables

An amortisation table shows, for each payment period: the balance after this payment; how
much of this payment goes to interest and how much to repaying the principle; the total
interest paid up to and including this payment; and the total paid towards the principal after
this payment.

The TI-84/CE program48 AMORTTBL/AMRTBLCE uses the TVM variables bal to find the
balance and ΣInt to find the cumulative interest; it then calculates the other values.49

All values are stored in lists:

� PAYT payment number

� BAL balance after this payment

� INT amount of interest paid in this payment (negative)

� PR amount of principal repaid in this payment (negative)

� CINT cumulative interest paid after this payment (negative)

� CPR cumulative principal paid after this payment (negative).

Press stat Edit after the program has run to view these lists. Scroll across to see all the lists.

The program also sets up three plots, all with payment number on the x axis:

� balance (Plot1);

� the amount of the payment that goes to paying interest (Plot2);

� the amount of the payment that goes towards repaying the principal (Plot3).

48available at canberramaths.org.au under Resources
49See Time, Value, Money: Applications on the TI-83 for more details.
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Using the program

First run the TVM Solver to find values for all the variables. Then press prgm , press the

number/letter against the AMORTTBL/AMRTBLCE program and press enter to run it.

The program will ask if you have run the TVM Solver — respond appropriately. After the
calculations have been carried out, the program will display all three plots superimposed. Use
the arrow keys to move along and between the plots. Press enter to move to a screen that
tells you where to find the table and plots.

You can then either view the lists by pressing stat Edit or select the particular plot you want
by highlighting it in y= using enter . Make sure all functions and other plots are turned off,

again using enter . Press zoom 9 to set appropriate axes for that plot. Press trace and
use the arrow keys to move along the graph. The amounts at each payment are shown at the
bottom of the screen.

The following screens show the superimposed three plots generated by the program from
Example 5 on page 188, the top few rows of the amortisation table and the three individual
plots, balance, amount of payment going to interest and amount of payment going to the
principal, all versus payment number.

When you have finished your analysis, re-run AMORTTBL/AMRTBLCE and select 3 to delete
all the lists and tidy up.
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22.4 TVM exercises and solutions

Note that N in the TVM Solver stands for different things in different types of calculations.
All results are rounded to two decimal places.
Starred questions were not covered here.

*1. Find the simple interest on a 90-day loan of $1600 at 5.6% per annum.

Solution No built-in commands. Use the formula.

The daily interest rate is 90/365 of the annual rate of interest. Therefore the amount
of interest is

90

365
× 0.056× 1600 = 22.09.

The interest is $22.09.

*2. How many days are there between January 12 2003 and June 3 2003?
Hint : the dbd command in the Finance menu.

Solution Finance menu: dbd command

Dates are entered in the form mm.ddyy.

dbd (1.1203, 6.0303) = 142

There are 142 days between January 12 2003 and June 3 2003.

*3. A store buys a skateboard for $45. What selling price will give a 30% margin?

Solution No built-in command. Use the formula.

If S is the selling price, 45+0.3S=S, so that S=45/0.7=64.29.

The selling price should be $64.29.

Note that a 30% margin means the return is 30% of the selling price. A 30% profit
means a return of 30% of the cost price.

4. (a) How much compound interest will be earned by an investment of $1600 for 10 years
at 93

4
% per annum?

Solution TVM Solver
N = 10 with no regular payments, N is the number of years
I% = 9.75 annual percentage interest rate
PV =−1600 negative because paid to bank
PMT = 0 no regular payments
FV = ? doesn’t matter what is here — this is what we have to find
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = 1 compounding periods per year (assumed to be equal to P/Y)

Then, FV = 4056.63 positive because paid to you

The final amount is $4056.63.

Interest = $4056.63− $1600 = $2456.63.
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(b) How much more interest will be earned if the interest were compounded quarterly?

Solution Change C/Y to 4 (compounding periods per year).
Then, FV = 4192.56.
The final amount is $4192.56.
Interest = $4192.56− $1600 = $2592.56.
Extra interest = $2592.56− $2456.63 = $135.93.

You could also just subtract one final amount from the other, as the difference is
the extra interest.

5. For how long should you leave $10,000 in the bank at 6% per annum interest, com-
pounded monthly, so that it grows to $12,000?

Solution TVM Solver
N = ? doesn’t matter what is here — this is what we have to find
I% = 6 annual percentage interest rate
PV =−10000 negative because paid to bank
PMT = 0 no regular payments
FV = 12000 the amount we want to receive
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = 12 compounding periods per year

Then, N = 3.046: because there are no regular payments, N is in years

You would need to leave the money in the bank 3.046 years or 3 years 17 days.

You might want to check that the bank will in fact give you the interest for the 17 days
if you withdraw the money then. You may have to leave the money in the bank until
the next monthly interest credit. By then you will have $12,026.64.

6. A credit card company charges 16% per annum interest, compounded monthly. What
is the effective rate of interest?

Solution: Here you can use the IEff command in the Finance menu (Method A).
However, this is a bit of a black box. More intuitively, we can do the calculations on an
amount of say $1000 (Method B).

Method A

Finance menu: IEff command

IEff (16, 12) = 17.23

16 is the annual percentage interest rate.
12 is the number of compounding periods in a year.

The effective interest rate is 17.23% (to 2 decimal places).

Method B

Here say we owe the credit card company an amount of $1000 over a year (the amount
does not matter — you always get the same answer).

If the interest is compounded once a year, the amount of interest to be paid is
0.16×1000 = $160.
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Now we calculate how much interest is to be paid if the interest is compounded monthly.

TVM Solver
N = 1 number of years, because no regular payments
I% = 16 annual percentage interest rate
PV = 1000 positive because it is a ‘loan’ paid to us
PMT = 0 no regular payments
FV = ? doesn’t matter what is here — this is what we have to find
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = 12 compounding periods per year

Then, FV = 1172.27.

The total amount of interest paid this time is $1172.27− $1000 = $172.27.
If this were the result of compounding once a year, the rate of interest would have to
have been 172.27/1000 = 0.17227 or 17.227%≈ 17.23%. This is the effective rate of
interest.

7. (a) To finance extensions to her house, Susan borrowed $7000 at 11% per annum.
What monthly payments are needed to repay the loan in 3 years?

Solution TVM Solver
N = 12×3 = 36 with regular payments, N is the total number of payments
I% = 11 annual percentage interest rate
PV = 7000 positive because paid to Susan
PMT = ? doesn’t matter what is here — this is what we have to find
FV = 0 loan paid off
P/Y = 12 payments per year — monthly payments here
C/Y = 12 compounding periods per year — assumed equal to P/Y

Then, PMT =−229.17, negative because paid to the bank

The monthly payment is $229.17.

(b) How much interest will she pay for this loan?

Solution: Total interest is equal to the total amount paid minus the loan amount
(principal), here 36×229.17−7000= $1250.12.

8. Julian’s lump-sum superannuation amounts to $350,000. He invests this sum to receive
a regular payment each month for the next 20 years. Assuming the interest rate stays
at 6.8% per annum, find the size of each payment.

Solution TVM Solver
N = 12×20=240 total number of payments
I% = 6.8 annual percentage interest rate
PV =−350000 negative because paid to bank
PMT = ? doesn’t matter what is here — this is what we have to find
FV = 0 capital and interest all used up after 20 years
P/Y = 12 payments per year
C/Y = 12 compounding periods per year — assumed equal to P/Y

Then, PMT = 2671.69
The monthly payment to Julian is $2671.69.
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9. A school establishes a sinking fund to save $90,000 over the next 2 years for a new
computer laboratory. How much should be deposited into the fund each month if the
interest rate stays at 71

2
% per annum?

Solution TVM Solver
N = 12×2=24 total number of payments
I% = 7.5 annual percentage interest rate
PV = 0 no capital
PMT = ? doesn’t matter what is here — this is what we have to find
FV = 90000 final amount required
P/Y = 12 payments per year
C/Y = 12 compounding periods per year — assumed equal to P/Y

Then, PMT =−3487.46
The monthly payment is $3487.46.

10. What is worth more? $1200 today or $100 per month for 1 year? Assume the interest
rate stays constant at 7.1% per annum.

Solution: Find the present value of $100 per month for a year at 7.1% per annum.

TVM Solver
N = 12 total number of payments
I% = 7.1 annual percentage interest rate
PV = ? doesn’t matter what is here — this is what we have to find
PMT =−100 monthly payment to bank
FV = 0 you need to put 0 here
P/Y = 12 payments per year
C/Y = 12 compounding periods per year — assumed equal to P/Y

Then, PV = 1155.10

The present value of $100 per month for 1 year at 7.1% per annum is $1155.10. This is
less than $1200, so $1200 today is worth more than $100 per month for 1 year at 7.1%
per annum.

We could have found the future value of both amounts, although this is more work.
Proceed as follows.

Set PV = 0 and solve for FV to find the future value of $100 per month for a year at
7.1% per annum to be $1239.83.

Convert $1200 today to its future value:

N = 1 total number of years (no regular payments)
I% = 7.1
PV =−1200 present value
PMT = 0 no regular payments
FV = ? doesn’t matter what is here — this is what we have to find
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = 12 compounding periods per year

Then, FV = 1288.03, so that the future value of the $1200 is $1288.03.
We reach the same conclusion as above: take the $1200!
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22.5 TVM activities and solutions

The activities are to help you use your calculator to learn mathematics.

All results rounded to two decimal places.

1. (a) Find the number of days between 12 January 2003 and 12 January 2004.

Solution: Finance menu, dbd command
Dates are entered in the form mm.ddyy : dbd (1.1203, 1.1204) = 365

There are 365 days between 12 January 2003 and 12 January 2004.

(b) Find the number of days between 12 January 2004 and 12 January 2005.

Solution: dbd (1.1204, 1.1205) = 366

There are 366 days between 12 January 2004 and 12 January 2005.

(c) Explain why the answers to Questions 1a and 1b are different.

Solution: 2004 was a leap year.

2. Banks sometimes advertise that interest is compounded daily on customers’ investments
in order to attract more business. But how much difference does more-frequent com-
pounding make? To find out, consider an investment of $100 in an account earning
compound interest at a rate of 8% per annum. Compare the interest obtained by com-
pounding: (a) annually; (b) quarterly; (c) monthly; (d) daily.

Solution TVM Solver
N = 1 number of years (no regular payments)
I% = 8 annual percentage interest rate
PV =−100 the amount invested — negative because paid to the bank
PMT = 0 no regular payments
FV = ? doesn’t matter what is here — we calculate this
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = compounding periods per year: set this value and calculate FV: see table

Compounding C/Y FV ($) Interest ($)

annually 1 108.00 8.00

quarterly 4 108.24 8.24

monthly 12 108.30 8.30

daily 365 108.33 8.33

You can also do these calculations directly with the command IEff (8, C/Y) because
the amount invested is $100: interest rate (%) = interest paid ($).
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3. The effective rate of interest associated with more-frequent compounding rapidly ap-
proaches er−1, where r is the annual rate of interest and e is the base of the exponential
function (e = 2.7182818 . . . ). Investigate this claim by taking some values for r and
examining the effect of more-frequent compounding (such as weekly, daily, hourly, etc).

Solution: See Exercise 6 above for details on how to calculate effective rate of interest.
Here we use various values for r= I%/100, and work out the effective rates of interest
for different compounding periods. The results are shown in the table below. In the
table, N is the number of compounding periods in a year. Interest rates are rounded to
2 decimal places.

The continuously compounded interest rate is 100
(
er−1

)
.

Effective interest rate % when compounded . . .

I% r yearly monthly weekly daily hourly continuously

N=1 N=12 N=52 N=365 N=8760 N→∞

5 0.05 5 5.12 5.13 5.13 5.13 5.13

7.5 0.075 7.5 7.76 7.78 7.79 7.79 7.79

10 0.1 10 10.47 10.51 10.52 10.51 10.52

20 0.2 20 21.94 22.09 22.13 22.14 22.14

Most of the change in the effective interest rate is between annual compounding (N = 1)
and monthly compounding (N = 12). The change between monthly and continuous
compounding 100(er−1) is relatively small, but larger for higher interest rates.

4. Jill purchased a new car for $11,999 by obtaining a 5-year loan from a finance company.
The interest on the loan was at a flat rate of 14% per year. Compare the amounts of
interest paid on this loan each year with the amounts paid for a loan of the same amount
at a rate of 14% reducible compound interest per annum, with monthly payments and
compounding.

Solution: The flat rate means she pays 14% of $11,999, or $1679.86, each year for 5
years. For the reducing rate:

TVM Solver
N = 12×5=60 number of payments
I% = 14 annual percentage interest rate
PV = 11999 the loan amount
PMT = ? we need to find this first
FV = 0 loan paid off
P/Y = 12 payments per year
C/Y = 12 compounding periods per year

Then, PMT =−279.20
The monthly repayments are $279.20.

PTO
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The simplest way to find the amount of interest paid each year is to run the AMORT-
TBL/AMRTBLCE program. You should get the amounts shown in the table below.

Year Flat-rate Interest ($) Reducing Interest ($)

1 1679.86 1568.39

2 1679.86 1302.27

3 1679.86 996.40

4 1679.86 644.86

5 1679.86 240.82

Total 8399.30 4752.74

5. A couple are hoping to buy their first home. They expect to obtain a 25-year loan,
and their monthly payments cannot exceed $920 if their living expenses are taken into
account. If the interest rate is assumed to be constant at 7% per annum, how much
money will they be able to borrow?

Solution TVM Solver
N = 12×25=300 number of payments
I% = 7 annual percentage interest rate
PV = ? doesn’t matter what is here — we calculate this
PMT =−920 monthly payments to bank
FV = 0 loan paid off
P/Y = 12 payments per year
C/Y = 12 compounding periods per year — assumed equal to P/Y

Then, PV = 130,167.95
The couple can only borrow $130,167. This is why first-home buyers often struggle.

6. A student purchased a new laptop multimedia computer system with software for $4500
by obtaining a personal loan at 13.4% per annum interest, compounded monthly.

(a) How much will each payment be if the loan is spread over 3 years?

Solution TVM Solver
N = 12× 3 = 36 number of payments
I% = 13.4 annual percentage interest rate
PV = 4500 amount of loan
PMT = ? doesn’t matter what is here — we calculate this
FV = 0 loan paid off
P/Y = 12 payments per year
C/Y = 12 compounding periods per year

Then, PMT =−152.49
The monthly repayment is $152.49.

(b) How much interest will be paid over the 3 years?

Solution

Total interest = total payments− amount of loan = 36×152.49−4500 = $989.64.
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*(c) If she arranged for a three-year loan, as in Parts (a) and (b), but then decided to
pay the entire loan balance at the end of 2 years, how much would she save?

Solution: To find out the total cost of this scheme, we need to find the balance
owing after 2 years and the total payments in the first 2 years.

Run the AMORTTBL/AMRTBLCE program to find the balance after 2 years ($1703.72),
the total interest paid in 2 years ($863.51) and the total principal paid in 2 years
($2796.28). The sum of these, $3659.79, is the total payments made in 2 years.
Alternatively calculate 24×152.49=$3659.76 (the difference in the two amounts is
due to rounding the payments to 2 decimal places.)

The total payment here is then the total payment for 2 years plus the balance
owing after 2 years, that is $3659.79 + $1703.72 = $5363.51.

The total payment for the full three-year loan is principal + interest, giving from
(b), $4500 + $989.68 = $5489.68.

The total saving in Part (c) is then $5489.68− $5363.51 = $126.17.

7. Jeremy decided to invest money in a superannuation account. He deposited $400 per
month into an account earning 9% interest per annum, compounded monthly.

(a) How much money will be in the account after 25 years?

Solution TVM Solver
N = 12×25=300 number of payments
I% = 9 annual percentage interest rate
PV = 0 nothing in the account to start with
PMT =−400 monthly payment to the bank
FV = ? doesn’t matter what is here — we calculate this
P/Y = 12 payments per year
C/Y = 12 compounding periods per year

Then, FV = 448448.77
The amount in the account after 25 years is $448,448.77.

(b) At the end of that time, Jeremy arranged to use the accumulated funds in the
account to receive a monthly payment for the next 25 years. If the interest rate
remains the same, find the size of the payment each month.

Solution
N = 12× 25 = 300 number of payments
I% = 9 annual percentage interest rate
PV =−448448.77 accumulated funds
PMT = ? doesn’t matter what is here — we calculate this
FV = 0 all funds used up after 25 years
P/Y = 12 payments per year
C/Y = 12 compounding periods per year

Then, PMT = 3763.37
The amount payed to Jeremy each month is $3763.37.

Seems like a good deal! Pay in $400 per month for 25 years, then receive $3763.37 per
month for the next 25 years. What’s the catch?
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8. Carole and Joyce have taken out a 25-year home loan of $120,000 to buy an apartment
at an interest rate of 71

2
% per annum, compounded monthly.

(a) Check that their monthly payment for this loan is $886.79.

Solution TVM Solver
N = 12×25=300 number of monthly payments
I% = 7.5 annual percentage interest rate
PV = 120000 amount of loan
PMT = ? doesn’t matter what is here — we calculate this
FV = 0 loan paid off
P/Y = 12 payments per year
C/Y = 12 compounding periods per year

Then, PMT =−886.79
The monthly repayment is $886.79.

(b) What would be the effect on the length of their loan if they were to pay an extra
$50 per month?

Solution: The new payment is $886.79 + $50 = $936.79.
Set PMT =−936.79.
Then, N = 258.8 (months)
The length of the loan would be reduced to 259 months or 21 years 7 months (the
last payment would be less than the full monthly payment).

(c) What would be the effect on the length of their loan of a drop in interest rates to
7% (assuming they pay $886.79 per month)?

Solution
I% = 7
PMT =−886.79

Then, N = 267.8 (months)

The length of the loan would be reduced to 268 months or 22 years 4 months (the
last payment would be less than the full monthly payment).

(d) Carole suggests paying $443.40 every 2 weeks instead of $886.79 per month, with
the interest rate at 71

2
% per annum interest, compounded monthly. How would

this plan affect the length of the loan?

Solution TVM Solver
N = ?
I% = 7.5
PV = 120000
PMT =−443.40 fortnightly payment
FV = 0
P/Y = 26 fortnightly payments per year
C/Y = 12 compounding periods per year

Then, N = 525.5 (fortnights)
The length of the loan would be reduced to 526 fortnights or 20 years 12 weeks
(the last payment would be less than the full fortnightly payment).
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(e) If they were to borrow only $115,000, yet still pay $886.79 per month, with interest
arrangements still the same, for how long will the loan last?

Solution
N = ?
I% = 7.5
PV = 115000 new loan amount
PMT =−886.79 monthly payment
FV = 0
P/Y = 12 monthly payments per year
C/Y = 12

Then, N = 267.0 (months)

The length of the loan would be reduced to 267 months or 22 years 3 months.

(f) Calculate how much time Carole and Joyce can save off the original repayment
time of 25 years if all of the above strategies are adopted: an interest rate of 7% is
obtained, compounded monthly; payments of $468.40 are made every 2 weeks (an
extra $25 per fortnight); and they only borrow $115,000 instead of $120,000.

How much interest would they save?

Solution
N = ?
I% = 7
PV = 115000
PMT =−468.40
FV = 0
P/Y = 26
C/Y = 12

Then, N = 401.8 (fortnights)

The length of the loan would be reduced from 25 years to 402 fortnights or 15 years
24 weeks.

They would pay a total of $73,203.12 in interest, compared to $146,037 for the
original loan, a saving of about $72,830.

PTO
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9. A perpetuity is an annuity that lasts forever.

Find the present value of a perpetual annual payment of $1000, assuming an interest
rate of 6% per annum, compounded monthly. (This is the amount you would need to
invest today to provide enough funds for an annual payment of $1000 forever.)

In TVM mode, explore this situation by choosing a large number for the number of
compounding periods N, and set FV to be zero.

Solution TVM Solver
N = 1000 number of compounding periods (years)
I% = 6 annual percentage interest rate
PV = ? doesn’t matter what is here — we calculate this
PMT = 1000 positive because the bank pays this out to the beneficiary
FV = 0 nothing left at the end (of time)
P/Y = 1 payments per year
C/Y = 12 compounding periods per year

Then, PV =−16213.29
You would need to invest an amount of about $16,213.
Changing N to 10,000 years also gives PV =−16213.29, so we can say the amount
invested is enough to make the payment ‘perpetual’.

Here, the amount of interest on the principal of $16,213.29 is just enough to cover the
annual $1000 payment. The principal actually remains the same from year to year.

We can check that this is the case using the TVM Solver.

N = 1 one payment a year
I% = 6 annual percentage interest rate
PV =−16213.29 the principal in the bank
PMT = ? doesn’t matter what is here — we calculate this
FV = 16213.29 principal remains the same at the end of the year
P/Y = 1 payments per year
C/Y = 12 compounding periods per year

Then, PMT = 1000, as we predicted.

PTO

205



22.5 TVM activities and solutions 22 FINANCIAL MATHEMATICS 2

10. You may have heard of the Rule of 72, which provides a rough approximation to the
amount of time it will take for an investment to double when interest is compounded
annually at a rate of I%. The Rule claims

doubling time ≈ 72

I%
.

So, according to the Rule of 72, an investment at a rate of 6%, compounded annually,
will take about 72/6 = 12 years to double in value.

Investigate this Rule using the TVM mode of the calculator. Over what range of values
for I% does it provide a useful approximation?

Solution TVM Solver
N = ? doesn’t matter what is here — we calculate this
I% = see table annual percentage interest rate
PV =−100 choose any amount
PMT = 0 no regular payments
FV = 200 double the PV
P/Y = 1 payments per year — must be set to 1 if no payments
C/Y = 1 compounding periods per year

Set values of I% and calculate N, the time to double the original amount.

The exact time N, the time according to the Rule of 72 and the percentage error in the
Rule of 72 are shown in the table below.

I% N (yrs) 72/I% % error

1 69.7 72.0 3.3

2.5 28.1 28.8 2.5

5 14.2 14.4 1.4

7.5 9.6 9.6 0.0

10 7.3 7.2 −1.4

20 3.8 3.6 −5.3

The approximation is good except for I%> 20, but particularly good around I% = 7.5.
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23 Complex Numbers

The material here is directly relevant to the topics on Complex Numbers in the Australian
Curriculum for Specialist Mathematics.

23.1 Setting complex mode

Press mode and select the Cartesian form a+bi (below left, 8th line).

Press 2nd mode (Quit) to return to the Home screen.

We shall use z1 =1+2i and z2 =3−i in our examples. i is 2nd · .

Complex numbers can be stored in the same way as ordinary numbers.

Store z1 in memory A: 1+2i sto A; store z2 in memory B: 3−i sto B (above right).

23.2 Basic operations

23.2.1 Addition and subtraction

Just as you would expect.

1+2i+ 3−i = 4+i or A+B = 4+i

1+2i− (3−i) =−2+3i or A−B =−2+3i

23.2.2 Multiplication and division

Again as you would expect. Implied multiplication works too.

(1+2i)(3−i) = 5+5i or AB = 5+5i

(1+2i)/(3−i) = 0.1+0.7i or A/B = 0.1+0.7i
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23.2.3 Conjugation

Finding the complex conjugate.

z̄1 = conj(1+2i) = 1−2i conj is math CMPLX 1

23.2.4 Real part

Re(z1) = real(1+2i) = 1 real is math CMPLX 2

23.2.5 Imaginary part

Im(z1) = imag(1+2i) = 2 imag is math CMPLX 3

23.2.6 Modulus

Sometimes called length or absolute value.

|z1| = abs(1+2i) =
√

12+22 =
√

5 ≈ 2.236 abs is math CMPLX 5

23.3 Polar form

The polar form (r, θ) of a complex number is represented on the TI-84/CE in exponential
form reiθ, where r is the modulus and θ is the (polar) angle.

This form is equivalent to the form r
(
cos(θ)+i sin(θ)

)
, often abbreviated as rcis(θ).

23.3.1 Modulus and angle

Use the math CMPLX operations abs and angle
to extract the modulus and angle, respectively,
of a complex number in either Cartesian (a+ib)
or polar form.

Similarly, real and imag can be used to find the
real and imaginary parts respectively of a num-
ber in polar form, and conj its complex conju-
gate.
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23.3.2 Forms of output

Cartesian (a+bi) mode

Set a+bi in mode .

Input
√

(2)eiπ/4 using the ex key and press enter .
√

(2)eiπ/4 → 1+1i.

Try the famous calculation eiπ.

To input an angle in degrees, use the degree symbol
angle 1 .

√
(2)ei45◦ → 1+1i.

Polar (reθi) mode

Set reθi in mode . Make sure you are in Radians.

Enter the number 1+i and press enter .

1+i → 1.414213562e0.7853981634i (=
√

2eiπ/4);
use the right arrow to scroll across.

If you repeat this in Degree mode,

1+i → 1.414213562e45i,

i.e. the angle is displayed in degrees.

However, if you do not change back to Radians to input polar form, any input with
an angle in degrees will be wrong (see Section 23.6.1).

A better alternative to changing back and forth between Degree and Radian mode when you
are using angles in degrees is to stay in Radian mode and use the CMPXANGD/ CXANGDCE

program50 to convert your output to degrees; it rounds all numbers to 5 decimal places. As
the program gives both the Cartesian and polar forms, it can also be used to convert one form
to the other.

If your calculations produce the decimal equivalent of√
(2)eiπ/5, running the program gives

Cartesian form 1.14412 + i0.83125

modulus R = 1.41421 (stored in memory R)

angle θ (rad) = 0.62832 (stored in memory T)

angle θ (◦) = 36 (stored in memory θ).

50available at canberramaths.org.au under Resources
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23.3.3 Forms of input

In carrying out calculations using complex numbers (page 207), you can input the numbers
in any form, Cartesian or polar or mixed. The mode setting only determines the output form
of the answer.

1+i+
√

(2)ei45◦ = 2.828427125e0.7853981634i polar form

= 2+2i Cartesian form.

When you are inputting in polar form, it is VITAL that you are in Radian mode
(see Section 23.6.1), even if you wish to input an angle θ in degrees.

23.3.4 Conversion between forms

To convert complex numbers from one form to the other, use the conversions in the math

CMPLX menu. This works whether you are in Cartesian or polar mode.

You can also use the CMPXANGD/CXANGDCE program (Section 23.3.2).

1+i IPolar enter gives 1.414213562e0.7853981634i in

Radian mode and 1.414213562ei45 in Degree mode.
√

(2)eiπ/4 IRect enter gives 1+1i in Radian mode

and an error in Degree modea (see Section 23.6.1).

aor the wrong answer on a TI-84Plus

23.4 Powers and roots

23.4.1 Powers

Integer powers work as you would expect.

(1+2i)4 = −7−24i.

(1+2i)−3 = −0.088+0.016i = − 11
125

+ 2
125
i.(√

2eiπ/4
)4

= 4eiπ = −4.

23.4.2 Roots

Unfortunately you only get one root of a complex number when you use square root, cube root,
nth root and fractional powers. To find all the roots,51 use the CMPXROOT/CXROOTCE

program (see Section 23.6.2), which calculates and plots the n nth roots of a given complex
number.

51A complex number has n nth roots (n an integer).
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23.5 Exercises

z1 =3+4i z2 =2+3i z3 =
√

(2)eiπ/4 z4 =eiπ/2

Find

1. z1+z2

2. 2z1+3z2

3. z1−z2

4. 4z1−2z2

5. z1z2

6. z1/z2

7. z̄1

8. z1z̄1

9. |z1|2

10. Re(z1)

11. Im(z2)

12. z2
1

13. z4
1

14.
√
z1

15. z3z4 in polar form

16. z3/z4 in polar form

17. z1 in polar form

18. z3 in Cartesian form

19. z4 in Cartesian form

20.
√
z4 in polar and Cartesian forms

Answers in Section 23.7.

23.6 Appendix

23.6.1 Input/output of complex numbers

TI-84CE

Mode Input Output* Correct?

a+ bi Radian
√

(2)eiπ/4 1+1i YES√
(2)ei45◦ 1+1i YES

Degree
√

(2)ei45 ERROR NO√
(2)ei45◦ ERROR NO√
(2)eiπ/4 1+1i YES

reiθ Radian 1+i
√

(2)eiπ/4 YES√
(2)ei45◦ √

(2)eiπ/4 YES
Degree 1+i

√
(2)ei45 YES√

(2)ei45 ERROR NO√
(2)ei45◦ ERROR NO

* given in decimal form

TI-84Plus

Where the TI-84CE gives ERROR, the TI-84Plus (OS 2.55MP) gives a wrong answer.

To input a complex number, always use Radian mode.

Use the degree symbol
(

angle 1
)

if the angle is in degrees.

Alternatively, use the CMPXANGD/CXANGDCE program to convert the polar form in radians
to the Cartesian form and the polar form in degrees (Section 23.3.2).
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23.6.2 CMPXROOT/CXROOTCE program

CMPXROOT/CXROOTCE52 displays x and y of the rectangular (Cartesian) form x+ iy and
plots the N roots of the complex number Z = A+iB on the Argand diagram. The roots all lie
on a circle (their moduli are the same) which is drawn.

Lines are drawn from the origin to each root to show where the root is and to make the
symmetry of the roots more obvious. Note that if a root lies on a co-ordinate axis, you won’t
see it, but it should be obvious from symmetry.

Use: Run the program. Input Z and N (positive integer) when prompted. The program
displays each root. Press enter to continue at each step.

The roots are also stored in list L6 for later use.

Move the cursor around the final plot using the arrow keys to see rectangular (x, y) values if
RectGC is set in format or polar (r, θ) values if PolarGC is set.

Example: The three cube roots (N = 3) of 1 + 2i are 1.220 + 0.472i, −1.018 + 0.820i and
−0.201− 1.292i, all rounded to three decimal places.

52available at canberramaths.org.au under Resources
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23.7 Answers to exercises

1. 5+7i

2. 12+17i

3. 1+i

4. 8+10i

5. −6+17i

6. 18/13−i/13

IFrac
(

math 1
)

is useful here

7. 3−4i

8. 25

9. 25

10. 3

11. 3

12. −7+24i

13. −527−336i

14. 2+i and−2−i

15.
√

2ei3π/4

16.
√

2e−iπ/4

17. 5e0.927295218i

18. 1+i

19. i

20. ±eiπ/4 ≡ ±(1+i)/
√

2
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24 Programming

24.1 Introduction

A basic program structure is INPUT → CALCULATION → OUTPUT . The input is usually
numbers (it might also be a function), the output can be text (e.g. ‘COMPLEX ROOTS’),
numbers, a graph or a table.

The programming language of the TI-84/CE is a subset of the BASIC programming language,
containing most of the useful features of that language together with the calculator graphics
commands and a large library of scientific functions.

Most of the commands have to be selected from a menu — you cannot type them in letter
by letter. prgm selected from the Home screen allows you to run, edit and create programs;

prgm selected while editing a program gives access to most of the programming commands.

The hardest thing to start with is finding the appropriate commands on the keyboard and in
menus.53 On pages 232 and 233 of these notes is a list of key strokes for the commands used
in the programs here. The Table of Functions at the back of the TI-84 Guidebook is also very
useful.

24.2 Basics

We start with a simple example and successively add features.

Input the radius of a circle, calculate and output its area.

24.2.1 Writing the basic program

Press the prgm key and use the left arrow to move to NEW. Press enter .

Enter the name of the program (up to 8 characters) — CIRCLE. Note that the calculator is
in alpha mode.

Press enter and you are now ready to enter the program.

Press prgm and have a look at the commands in each of the sub-menus CTL (Control),

I/O (Input/Output) and COLOR on the CE.

Here is our basic program. Press enter at the end of each line to go to the next line. Press
clear in a menu to return to the program without selecting a menu item.

Prompt R prgm I/O 2 alpha R

πR2 → A 2nd ∧ alpha R x2 sto alpha A

Disp A prgm I/O 3 alpha A

When you are happy with the program, press 2nd quit to return to the Home screen.

Press prgm , select the CIRCLE program by typing its number or with the cursor and enter .

This displays prgmCIRCLE on the Home screen.

53If you’re really stumped, all the commands are in the catalog menu
(

2nd 0
)
: press a letter key (don’t

press alpha first) to go to commands starting with that letter. You can scroll upwards from the top or down

to the bottom to get to the commands and characters that don’t contain letters.
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Press enter to run the program. Try some R
values (R = 1 should give a recognisable area)
to make sure the program is running correctly.

If you press enter after the program has finished, you will rerun the program — the calculator
executes the last command again, making it easy to enter successive R values.

When a program is running, you will see continuously moving vertical bars (84) or a moving
yellow circle (CE) in the top right corner of the screen.

24.2.2 Making corrections

If you have made a mistake in entering the code, the calculator may detect the error and stop
with an error message ERR: message and a choice of quitting (returning to the Home screen)
or going to the error. Select the second option by pressing 2 and the calculator will take you
to the problem in the program.

If the program runs OK, but gives the wrong output, press prgm , select EDIT, then the
program. This allows you to edit the program.

Use the del and ins keys to edit within a program line. clear clears a whole line but leaves

the blank line. del on a blank line deletes the line.

24.2.3 Making the program more user-friendly

It makes the program easier to use if there isn’t clutter on the screen and if the program gives
some idea of what it does, what input it requires and what it outputs.

Commands that are new or changed from the previous program are highlighted.

The ins key allows you to insert characters in a line.

ins enter at the beginning or end of a line gives a blank line.

2nd alpha gives alpha LOCK (for letters), alpha turns it off.

ClrHome prgm I/O 8 clear the Home screen

Disp "AREA OF A CIRCLE" prgm I/O 3 2nd alpha + A R . . .

space  is alpha 0

Input "RADIUS: ", R prgm I/O 1 ; colon : is alpha .

πR2 → A

Disp "AREA", A

Run this version.
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24.3 Looping

24.3.1 Looping for input

Maybe we’d like to enter a number of values for R without having to rerun the program each
time. We do this with a simple loop using a Label and a Goto.

ClrHome

Disp "AREA OF A CIRCLE"

Lbl 1 prgm 9 1

Input "RADIUS: ", R

πR2 → A

Disp "AREA", A

Goto 1 prgm 0 1

This makes entering a number of radius values easier, but how do we stop the program?

Press on and select Quit. This stops any program and returns to the Home screen.

Use on Goto to go back to edit the program — useful during its development.

24.3.2 Looping to check input

Another place for a loop is to test whether an input value falls within a specified range. In
our example, we expect R> 0 (although it doesn’t matter in this case because we square R).
Let’s use a loop to test for this. We also introduce the If statement here.

ClrHome

Disp "AREA OF A CIRCLE"

Lbl 1

Input "RADIUS: ", R

If R < 0 If is prgm 1 ; < is 2nd test
(

math key
)

5

Goto 1 Do this step if the If is true, otherwise skip this step

πR2 → A

Disp "AREA", A

Goto 1

Check your program with suitable inputs, i.e. at
least one negative R.

See Extension 1 on page 226 for another way to use
such a loop and Extension 2 on page 226 for a more
elegant error check. Make a copy of your program
here (see the last chapter in Volume 2 of this book)
so you can come back to these extensions later.
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24.3.3 Including an error message

Let’s say we want to tell the user that he or she has made a mistake in the input. Such
diagnostics are always useful, especially for students.

Here we embellish the If statement with a Then and End, and introduce Pause, which stops
the program until the user presses enter .

That a program has Paused is indicated by shimmering dots (84) or a rotating white circle
(CE) in the top right corner of the screen.

Note that anything in inverted commas is text, and can be whatever you want.

ClrHome

Disp "AREA OF A CIRCLE"

Lbl 1

Input "RADIUS: = ", R

If R < 0

Then prgm 2

Disp "∗ ∗ ∗ MAKE R≥0 ∗ ∗ ∗" ∗ is × used for emphasis here

Pause prgm 8

Goto 1

End prgm 7 ends the If Then

πR2 → A

Disp "AREA", A

Goto 1

Don’t forget suitable tests for this version of the program.
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24.3.4 Looping through a range of input values

Here we use a For loop to carry out the calculations for a specified range of (equally spaced)
input values. The For command has the format

For (R, F, L, S)

commands

End

Variable R starts with a value of F and commands are executed. R is then increased by S
and commands are executed again. This continues until R>L.54

Remove the lines
(
use clear del

)
that test for R< 0 to keep the program simple.

ClrHome

Disp "AREA OF A CIRCLE"

Input "FIRST R: ", F prompt for the initial value of R

Input "LAST R: ", L prompt for the final value of R

Input "R STEP: ", S prompt for the increment in R

For (R, F, L, S) prgm 4

πR2 → A

Disp "R, AREA", R, A

Pause pause to read answer

End end For loop

Run the program. Press enter after each output to continue.

54S can be negative, so that R is decreased. In this case, L must be less than F, and the program stops
when R<L.
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24.4 Displaying results as a table

Rather than displaying the areas one by one as we did in the previous example, we can put
them in a table. Then we can scroll up and down to see all the answers.

To make up a table, we need to put the R and A values in lists. Here we use list L1 for R and
list L2 for A.

Lists L1 – L6 are built in to the calculator and can be accessed from the keyboard. You can
also give lists names of up to five characters.

The variable I in the following program is the list index or counter — we have to increment
it by 1 each time we store a value in a list.

ClrHome

SetUpEditor stat 5 ensures that lists L1 – L6 are shown when we

press stat EDIT after running the program

ClrList L1, L2 stat 4 2nd 1 , 2nd 2 clears the lists

1 → I initialise the list index

Disp "AREA OF A CIRCLE"

Input "FIRST R: ", F

Input "LAST R: ", L

Input "R STEP: ", S

For (R, F, L, S)

R → L1 (I)

πR2 → L 2 (I)

I+1 → I increment the list index by 1

End end of For loop

Disp "", "PRESS STAT EDIT" tell the user how to view the answers;
the inverted commas with no enclosed
characters give a blank line in the output

Run the program with R varying from 0 to 10 in steps of 1 and scroll down the L2 column.
Press 2nd quit to return to the Home screen from the table.
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24.5 Displaying results as a graph

24.5.1 Graphing data points from a program

Once we have the results in lists, it is a simple step to graph them. We use statplot
(

2nd

y=
)

to define the plot, i.e. tell the calculator where the data are, what sort of graph to plot

and what marker to use for the points. On a CE, you can also choose the colour.

We also use ZoomStat to set suitable axes for the graph and trace to allow us to move the
cursor along the plotted values. The table of values is still created.

ClrHome

FnOff vars Y-VARS 4 2 turn off any functions in y=

PlotsOff 2nd statplot 4 turn off any plots

ClrDraw 2nd prgm (draw) 1 clear the graphics screen

1 → Xscl Xscl is vars 1 3 tick marks on the X axis

50 → Yscl Yscl is vars 1 6 tick marks on the Y axis

ClrList L1, L2

1 → I

Disp "AREA OF A CIRCLE"

Input "FIRST R: ", F

Input "LAST R: ", L

Input "R STEP: ", S

For (R, F, L, S)

R → L1 (I)

πR2 → L2 (I)

I+1 → I

End

Plot1 (Scatter, L1, L2, �) statplot 1 statplot TYPE 1 ,

2nd 1 , 2nd 2 , statplot MARK 1

ZoomStat zoom 9

Trace Trace key trace on the CE

Disp "", "PRESS STAT EDIT"
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Run the program with R varying from 0 to 10 in steps of 1 to test it. Pressing the left/right
arrow keys will move the cursor along the plotted points. Press enter to exit from the graph.

24.5.2 Graphing functions from a program

Graphing a function from a program is simple — the function has to be defined in y= ,

either before the program is run or from within the program.

Be careful in a program that the correct function is turned on — use FnOn and FnOff to do
this. If you define a function within a program, it is automatically turned on.

There are several commands you can use in a program to display a graph. All of these will
cause any functions and any plots turned on to be graphed.

� Trace — displays the graph with a cursor you can move along the functions/points
plotted, just as you would using trace manually. Trace pauses the program — press
enter to continue.

� Input — prgm I/O 1 with no arguments. Input displays the graph with a cursor that

you can move around the screen. Input pauses the program — press enter to continue.

� DispGraph — prgm I/O 4 . DispGraph displays the graph without a cursor. Disp-

Graph does not pause the program — if it is not the last statement in the program, you
will have to follow it with a Pause.

� DrawF — draw 6 . DrawF followed by a function definition either explicitly in terms

of X (e.g. 3X+4) or one of Y1 – Y0, draws that function. Use Input or Pause to view
the graph. A function drawn with DrawF cannot be Traced. An advantage of DrawF
is that it allows successive graphs to be superimposed — see Exercise 1.

To continue our example and do some curve fitting, let’s fit a quadratic function to our data
points and graph it together with the data.

The data-fitting commands are in the stat CALC menu. The QuadReg command determines
the equation of the quadratic function that best fits the data (here a perfect fit), stores it in
and turns on Y1. The Trace command causes Y1 to be graphed and pauses the program.
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ClrHome

FnOff

PlotsOff

ClrDraw

1 → Xscl

50 → Yscl

ClrList L1, L2

1 → I

Disp "AREA OF A CIRCLE"

Input "FIRST R: ", F

Input "LAST R: ", L

Input "R STEP: ", S

For (R, F, L, S)

R → L1 (I)

πR2 → L2 (I)

I+1 → I

End

Plot1 (Scatter, L1, L2, �)

ZoomStat

Trace view the data points

QuadReg L1, L2, Y1 stat CALC 5 ; Y1 is vars Y-VARS 1 1

Trace view the data points and the fitted curve

Disp "", "PRESS STAT EDIT"
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Run this program with R varying from 0 to 10 in steps of 1 and see if you get the expected
fit to the data points.

Press enter after the points are plotted to see the fitted curve. Move along the curve with
the left and right arrows.

Press enter to finish the program and look at Y1 in y= to see the equation of the fitted
curve.

24.5.3 Putting text on a graph

Sometimes it is useful to annotate graphs so that the user can understand what is being
plotted or be prompted for the next key stroke(s).

As an example, in the graph of our last two versions of the program, the calculator pauses
in Trace. Possible keys to press are the arrow keys to move along or between the graphs and
enter to finish the program. We use the Text command to indicate this on the graph.

The Text command is of the form Text (row, column, "text" or variable). The coordinates
row and column are pixel coordinates rather than the coordinates given by the window.

On a TI-84, row varies from 0 (top of screen) to 57 (bottom of screen), while column varies
from 1 (left of screen) to 94 (right of screen).

On a TI-84CE, row varies from 0 (top of screen) to 150 (bottom of screen), while column
varies from 0 (left of screen) to 255 (right of screen).

It is usually necessary to experiment with the pixel coordinates to get the text in the right
place.

Text can also be used to display the value of a variable — put the variable name in the
command without inverted commas.

Any combination of text and variable values can be put together in a single Text command
— just put them one after the other, separated by commas. This is useful if you want to
display the name of a parameter and its value, e.g. Text (0, 2, "N=", N).

Note the use of a colon to join commands in the program below.
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TI-84

ClrHome: ClrDraw

FnOff : PlotsOff

1 → Xscl: 50 → Yscl

ClrList L1, L2

1 → I

Disp "AREA OF A CIRCLE"

Input "FIRST R: ", F

Input "LAST R: ", L

Input "R STEP: ", S

For (R, F, L, S)

R → L1 (I)

πR2 → L2 (I)

I + 1 → I

End

Plot1 (Scatter, L1, L2, �)

ZoomStat

Text(8, 13, "[ARROWS]   [ENTER]") Text is draw 0 ; [ is 2nd × , ] 2nd −

Trace

QuadReg L1, L2, Y1

Text(8, 13, "[ARROWS]   [ENTER]")

Trace

Disp "", "PRESS STAT EDIT"

TI-84CE: Text(8, 30, "[ARROWS]   [ENTER]") .
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24.6 Simple animation

Animation is achieved by creating the separate frames, storing them in the picture memories
Pic1, Pic2, . . . , Pic0, then recalling them one by one. Because of the way the CE recalls Pics,
the following program gives a better result on the standard 84 than on the CE.

This program also illustrates the use of getkey to record a key press while a program (loop)
is running — here we use the Q key to stop the program.55

Program ANIMATE

FnOff: PlotsOff: ClrDraw

AxesOff 2nd zoom (format) ; use the cursor and enter to select

ZStandard zoom 6 standard axes

ZSquare zoom 5 same scale on each axis: circles are circular

Shade (−
√

(64−X2),
√

(64−X2)) draw shade between the two semicircles

Text (1, 1, "Q: QUIT") on-screen prompt to tell user how to stop the program

StorePic 1 draw STO menu store the first screen in Pic1

ClrDraw

Circle (0, 0, 8) draw menu circle centre (0, 0), radius 8

Text (1, 1, "Q: QUIT")

StorePic 2 store the second screen in Pic2

Lbl 1 start animation loop

ClrDraw

RecallPic 1 draw STO menu recall the first screen

For (I, 1, 150) delay loop to view screen

End replace these two lines with Wait 0.15 on a CE

ClrDraw clear the graphics screen

RecallPic 2 recall the second screen

For (I, 1, 120) shorter delay loop to allow for the time taken for getkey test

End replace these two lines with Wait 0.12 on a CE

If getKey = 74 prgm I/O menu getkey detects if a key has been pressed

Goto 2 if the Q key (key 74) has been pressed, go to Label 2 (tidy up and quit)

Goto 1 if the Q key hasn’t been pressed, go back to Label 1 (start of loop)

Lbl 2 tidy up PTO
55 on Quit would stop it too, but there would be no ‘tidying up’ as here.
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AxesOn

DelVar Pic1 prgm (scroll up) vars 4 1

DelVar Pic2

ClrHome

24.7 Extensions

Extension 1

Follows on from the example on page 216. We could also use R< 0 as a way to stop the
program, rather than using on Quit.

Note the message telling the user this after the main heading.

ClrHome

Disp "AREA OF A CIRCLE" ,"R<0 TO STOP"

Lbl 1

Input "RADIUS: ", R

If R < 0

Stop prgm F or scroll up and select

πR2 → A

Disp "AREA", A

Goto 1

Extension 2

Follows on from the example on page 216. For a simpler, more elegant check on the input,
we can use a Repeat loop.

ClrHome

Disp "AREA OF A CIRCLE"

Lbl 1

Repeat R ≥ 0 prgm 6 repeat down to End until the condition R≥ 0 is true

Input "RADIUS: ", R

End

πR2 → A

Disp "AREA", A

Goto 1
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Extension 3

Here we introduce a custom Menu in a program that calculates the area of a triangle, rectangle
or circle. Only an outline of the program is given here — details are to be completed in
Exercise 2.

Menu is in the prgm CTL menu.

Output, in the prgm I/O menu, is like Text, but writes on the Home screen rather than the
graphics screen.

Note the use of a suggestive letter for each label.

Program AREA

Lbl M main menu

ClrHome

Menu (" AREA OF A . . .  ", "TRIANGLE", T, "RECTANGLE", R,
"CIRCLE", C, "QUIT", Q)

Lbl T triangle

Insert heading, prompts, inputs and calculations to calculate the area of a triangle.
Store the area in A.

Goto D

Lbl R rectangle

Insert heading, prompts, inputs and calculations to calculate area of a rectangle.
Store the area in A.

Goto D

Lbl C circle

Insert heading, prompts, inputs and calculations to calculate area of a circle.
Store the area in A.

Lbl D display area A

Disp "AREA", A

Output (8, 10, "[ENTER]") * tells the user to press enter to continue

Pause

Goto M

Lbl Q quit

ClrHome

* Output (10, 20, "[ENTER]") on a CE
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Extension 4

A program to move a cursor around the screen according to which arrow key is pressed.

StoreGDB 0 stores current graphics settings and functions
for later restoration: draw STO menu

FnOff: PlotsOff: ClrDraw

AxesOff turns off the axes: format menu

CoordOff turns off the display of the cursor coordinates: format menu

28 → A vertical coordinate of initial cursor position CE: 75 → A

45 → B horizontal coordinate of initial cursor position CE: 127 → B

2 → S distance the cursor will move at each step CE: 5 → S

Text(A,B, "∗") draw the cursor at the location (A,B): ∗ is ×

Repeat K = 74 outer Repeat loop: loop until the Q key is pressed

Repeat K 6= 0 inner Repeat loop: determines when a key has been pressed

getKey → K store the key coordinate in K

End end of inner Repeat loop

Text(A,B,"     ") erase the cursor at previous position CE: 4  (spaces)

If K = 24: B−S → B subtract S from B if key 24 (left arrow) has been pressed

If K = 25: A− S → A subtract S from A if key 25 (up arrow) has been pressed

If K = 26: B + S → B add S to B if key 26 (right arrow) has been pressed

If K = 34: A + S → A add S to A if key 34 (down arrow) has been pressed

Text(A,B,"∗") draw the cursor at the current location given by A and B

Game commands go here, for example, to test whether the cursor is now in some previ-
ously specified position where something is to be gained or lost, or has reached the edge
of the screen.

End end of outer Repeat loop

ClrDraw tidy up and stop

RecallGDB 0 restores the original graphics settings: draw STO menu

DelVar GDB0 delete GDB0: prgm CTRL menu; vars GDB menu

ClrHome

Disp "GAME OVER"
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24.8 Exercises

Possible solutions in Section 24.9.

If these exercises seem too hard, think up a suitable calculation and program it.

Exercise 1: Area of a geometric shape

Write a user-friendly program that calculates the area of a triangle, rectangle or circle, given
appropriate inputs. Hint : see Extension 3.

Exercise 2: Family of curves

Assume that Y1 = AX2 + B and that a suitable window has been set.

Your program called FAMILY should

� clear the Home screen

� turn off all functions

� turn off stat plots

� clear the graphics screen

� display a header on the Home screen

� start a loop (Lbl)

� input values for A and B

� draw the graph (DrawF Y1)

� pause to allow you to look at the graph

� return for another set of values for A and B (end of loop)

FAMILY allows you to see the effect on the function of changing the parameters A and B.

Use a window of [−5, 5, 1]×[−10, 10, 2]. Try A = 1, −1, 2, 0.5 with B = 0. Use on Quit to
stop the program and rerun with A = 1 and B = 0, ±2, ±5.

You can put in Y1 any function containing two parameters A and B, and plot the corresponding
family of curves using FAMILY. Try, for example, Y1 = A(X−B)2.

Exercise 3: Roots of a quadratic equation

Find the real roots of the quadratic equation Ax2+Bx+C=0, where A, B and C are inputs.
Display a message if the roots are complex (later you might like to extend the program to
complex roots). Finally plot the quadratic: specify the x range in the program (Xmin, Xmax)
— the roots should help here — and use ZoomFit, which calculates a suitable y range and
plots the graph.

To put the quadratic function in Y1 : "AX2+BX+C" → Y1. This works both within a
program and from the Home screen (although entering the function using y= is clearly an
easier option in the second case).
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24.9 Possible solutions to the exercises

Exercise 1: Area of a geometric shape

Program AREA

Lbl M
ClrHome
Menu (" AREA OF A. . .  ","TRIANGLE",T,

"RECTANGLE",R,"CIRCLE",C,"QUIT",Q)
Lbl T
Disp "    TRIANGLE" CE: 9  (spaces)
Input "BASE: ", B
Input "HEIGHT: ", H
0.5BH → A
Goto D
Lbl R
Disp "    RECTANGLE" CE: 8  
Input "LENGTH: ", L
Input "WIDTH: ", W
LW → A
Goto D
Lbl C
Disp "     CIRCLE" CE: 10  
Input "RADIUS: ", R
πR2 → A
Lbl D
Disp "AREA", A
Output (8, 10, "[ENTER]") CE: Output (10, 20, "[ENTER]")
Pause
Goto M
Lbl Q
ClrHome
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Exercise 2: Family of curves

Program FAMILY

ClrHome
ClrDraw
FnOff
PlotsOff
Disp "FAMILY PROGRAM", "PARAMETERS A,B"
Lbl 1
Prompt A, B
DrawF Y1

Input
Goto 1

Exercise 3: Roots of a quadratic equation

Program QUAD

ClrHome
ClrDraw
FnOff
PlotsOff
"AX2+BX+C" → Y1

Disp "  QUADRATIC EQN", "   AX2 + BX + C = 0" CE: 6  ; 8  
Prompt A, B, C
B2− 4AC → D
If D< 0
Then
Disp "COMPLEX ROOTS"
Stop
End
(−B +

√
(D))/(2A) → R

(−B−
√

(D))/(2A) → S
Disp "ROOTS", R, S
Pause
If R<S
Then
R−2→ Xmin
S+2 → Xmax
Else
S−2 → Xmin
R+2 → Xmax
End
0→Xscl
ZoomFit

Once the program has finished, you can press trace or change the window and re-graph.
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24.10 Keystrokes used in the programs

� 2nd statplot
(

y= key
)

MARK 1

[ 2nd ×

] 2nd −

: alpha .

" alpha +

= 2nd test
(

math key
)

1

< 2nd test
(

math key
)

5

≤ 2nd test
(

math key
)

6

π 2nd ∧

 (space) alpha 0
√

( 2nd x2

→ sto

AxesOff 2nd format
(

zoom key
)

— use the cursor and enter to select

Circle( 2nd draw
(

prgm key
)

9

ClrDraw 2nd draw
(

prgm key
)

1

ClrHome prgm I/O 8

ClrList stat 4

DelVar prgm alpha G or scroll up and select

Disp prgm I/O 3

DrawF 2nd draw
(

prgm key
)

6

Else prgm 3

End prgm 7

FnOff vars Y-VARS 4 2

For( prgm 4

getKey prgm I/O 7

Goto prgm 0

If prgm 1

Input prgm I/O 1

L1 2nd 1

L2 2nd 2
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Lbl prgm 9

Menu( prgm alpha C or scroll up and select

Output( prgm I/O 6

Pause prgm 8

PlotsOff 2nd statplot
(

y= key
)

4

Prompt prgm I/O 2

Plot1( 2nd statplot
(

y= key
)

1

QuadReg stat CALC 5

RecallPic 2nd draw
(

prgm key
)

STO 2

Repeat prgm 6

Scatter 2nd statplot
(

y= key
)

TYPE 1

SetUpEditor stat 5

Shade( 2nd draw
(

prgm key
)

7

space alpha 0

Stop prgm F or scroll up and select

StorePic 2nd draw
(

prgm key
)

STO 1

Text( 2nd draw
(

prgm key
)

0

Then prgm 2

Xscl vars 1 3

Y1 vars Y-VARS 1 1 or alpha f4 1

Yscl vars 1 6

ZoomFit zoom 0

ZoomStat zoom 9

ZSquare zoom 5

ZStandard zoom 6
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